
Harmonisation in modern rhythmic music using Hidden Markov Models

Nikolas Borrel-Jensen
Founder, Livetake

Denmark
Email: nb@livetakeconcert.com

Andreas Hjortgaard Danielsen
Machine Learning Specialist, Alexandra Institute

Denmark
Email: andreashd@gmail.com

Abstract—A method for harmonising rhythmic music is
presented. It uses a hidden Markov model to learn harmon-
isations of different artists in different genres and allows
new chord sequences to be generated with respect to a
given melody. The main focus of this article is on how
to perform the feature extraction for the chords and the
melody lines necessary for the method to perform well. We
show the results of the harmoniser by discussing 3 different
harmonisations using a simple music theoretical analysis of
the results.

Keywords-Automatic harmonisation; algorithmic composi-
tion; hidden Markov models; musical feature extraction.

I. INTRODUCTION

The goal of harmonisation is to provide a series of
chords underlying a given melody such that the cor-
respondence between melody and chords makes sense
musically. In this text we describe a probabilistic method
for automatic harmonisation of rhythmic music which can
be used by the composer as inspiration for harmonising
a piece in progress. We have created a database of music
consisting of tunes from two different genres: Melodic
rock and standard jazz. These tunes are used to learn the
parameters of a hidden Markov model, which in turn can
be used to generate new harmonisations given new input
melodies. The system implementing this method along
with the database is called Cremo, an abbreviation of
Creative Modelling.

The harmonisations generated by this model are not
meant to be used directly as the final harmonisation, but
rather as a source of inspiration for the composer and
therefore we avoid the challenge of voicing the chords.
We perform a feature extraction that simplifies each chord
in order to reduce the dimensionality of the problem. We
also perform feature extraction on the melody for making
it more likely to find similar patterns in the database. How
to extract these features is the main focus of this paper and
will be discussed thoroughly in the following sections.

Several texts exist on automatic harmonisation, most
notably the article by Moray Allan [1] in which a method
for harmonising Bach chorales is presented. Chorales
consist of four voices: A soprano, an alto, a tenor and
a bass. Considering each soprano note as an observable
variable and the three remaining voices as a triad chord,
a hidden Markov model is used to learn the style of
Bach chorales in order to generate new chorales using the
Viterbi algorithm or by sampling.

Hörnel and Menzel [2] have developed a system called
HARMONET for harmonising 4-part Bach chorales in the
style of a composer, given a one-part melody. HAR-
MONET integrates feed-forward neural networks and
symbolic algorithms. The neural network is responsible for
aesthetic conformance to a given set of training examples
by a composer, whereas conventional algorithms do the
bookkeeping task, such as observing pitch ranges and
obeying the rules for harmonising chorales.

The paper is organised as follows: In Section II the
hidden Markov model is explained and how it is used
as a model for harmonisation is clarified. Section III and
IV describes how chords and melodies are represented,
respectively, and how feature extraction is done. In Section
V we discuss the results of the method by harmonising 3
different melodies and finally in Section VI we conclude
on the method and present future enhancements. Through-
out the text we assume that the reader is familiar with
basic music theory, i.e. knows about diatonic scales, scale
degrees and chord progressions.

II. HIDDEN MARKOV MODELS FOR HARMONISATION

Following the same observations as Moray Allan
[1], we consider the chords as an underlying Markov
chain emitting a melody according to a hidden Markov
model (HMM). This makes sense musically as the
notes played in a melody is dependent on the under-
lying chord progression. A HMM is a statistical model
in which we have a sequence of observable variables
{x1,x2, . . . ,xN} and a corresponding sequence of latent
variables {z1, z2, . . . , zN}. The latent variables form a
Markov chain, such that

p(zn|z1, z2, . . . , zN) = p(zn|zn−1) (1)

Each observable variable only depends on its correspond-
ing hidden variable, that is

p(xn|x1,x2, . . . ,xN , z1, z2, . . . , zN) = p(xn|zn) (2)

Figure 1 shows a graphical model of a HMM illustrating
these dependencies.

For harmonising we let the hidden variables represent
chords and the observable variables represent a melody
line over a given chord. Thus we see that each chord
is dependent on the previous chord due to the Markov
property which makes the model able to learn chord
progressions. Having a training set of tunes in a given
genre, we can train the HMM to fit the given genre by

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Figure 1. A graphical model of the hidden Markov model

computing the transition matrix for the Markov chain and
the emission matrix for the observable variables. Since
we have both chords and melody in the training set we
can compute these directly. Having learned the parameters
of the HMM we can now use it to generate a new
harmonisation to a given input melody using the Viterbi
algorithm (see [1] and [3]).

Because we need to treat chords and melody lines as
different variables, we need to store them separately in our
database, since extracting chords and melody in a mixed
environment is not a trivial task. The melody line consists
of single notes whereas the chord line consists of parallel
notes of the chords usually placed at the first or third beat
of each bar. Storing the data in the MIDI format makes the
task of splitting up very easy. Figure 2 shows an example
snippet of the chorus of the Mercury Rev song Chains in
which the melody is stored in channel 1 and the chords
are stored in channel 2.

III. HARMONIC FEATURES

The basic harmonic units used in rock and jazz are triads
and seventh chords and can be build from diatonic scales.
This skeleton is usually extended with additional notes
for colouring the chords where these implied extensions
are chosen with respect to the harmonic function of the
chords. By only considering the functional harmony of
the chords (tonic, subdominant etc.) we can extract the
important notes of the chords and discard the extensions
and therefore reduce the quantity of chords in our training
data. This reduces the dimensionality of the problem and
helps Cremo choosing the right chords for a given melody
sequence. When categorising the chords by harmonic
function, the important notes are the third and the seventh
scale degrees. The fifth degree is only important when
augmented. Though, for dominant chords we retain the
augmented fifth and the extension [9 used for an altered
sound.

The final set of extracted chords can be seen in Table I
and II. The chords depicted in Table II are so-called slash
chords in major. Slash chords are chords where the bass
note of the chord is not the actual root of the chord (e.g.
C/E or Cmaj7/D).

A. Implementation of harmonic features

We represent the chords as the absolute pitch of the bass
note together with the relative distance from that note to
each of the chord notes. We denote the interval by integer
values from 0 to 11, where 1 is a minor second, 2 is a
major second, and so on. This representation is unambigu-
ous but the original voicing can not be reconstructed (but

Triads
Major
Minor
sus4
sus2

5 (power chord)
◦ (diminished)

Sixth/Seventh chords
maj7

maj7]11
maj7]5

m7
mmaj7

mmaj7]5
7

7,]5
7[9

7 sus4
7[9 sus4

7sus2
∅7
◦7

Table I
BASIC CHORD TYPES WITH ONLY THE MOST IMPORTANT

EXTENSIONS PRESENT. THE 9 SUS4 CHORD IS NOT DEPICTED SINCE
IT CORRESPONDS TO THE SLASH CHORD I/II DEPICTED IN TABLE II.

Slash chord Chord with respect
to the root

Relative representation

I/[II mmaj7 [5 -
I/II 9sus4 {2, 5, 10}

I/[III 6 b9 [5 -
I/III m[6 {3, 8}
I/IV maj7 sus2 {2, 7, 11}
I/[V [7]11 omit 3 {6, 10}
I/V 6sus4 {5, 9}
I/VI m7 -

I/[VII 6]4 add9 {2, 6, 9}
I/VII 6 [9 sus4 {1,5,8}

Table II
BASIC MAJOR SLASH CHORDS.

the chord function can). The root of the chord is explicitly
added when reconstructing the chord by adding a 0 to the
chord.

For extracting the chords depicted in Table I and II,
we distinguish between chords with a third and chords
with no third present. The chords depicted in boldface
in Table II are the slash chords we will support, since
the chords in plain text can be interpreted as normal
chords with the third present. Sus2 and sus4 chords will
also be treated like slash chords in our implementation,
since no third is present. For the non-slash-chords, we will
distinguish between dominant and non-dominant chords.
This partitioning can be seen in Table III.

The implementation is done by considering chord notes
as sets and is done as follows: For chords with a third, let

Chords without
third

Chords with third

Dominant Non-dominant
I/II, I/III, I/IV,

I/[V, I/V, I/[VII,
I/VII, sus2, sus4,

7sus4, 7sus2,
7[9sus4, power

chord

7, 7]5, 7[9, 7]5[9 major, minor, ◦,
maj7, maj7]4,
maj7]5, m7,

mmaj7, mmaj7]5,
∅7, ◦7

Table III
BASIC CHORDS AFTER FEATURE EXTRACTION.

Channel 1

Channel 2

!

!
!" # $

And I-

% %
know

%& %
you want

%&
it,

%& % " ' # $
and I

% %
know

%& %
you

%&

!" ((() (((((()
*" (((

Figure 2. This snippet of the chorus of the Mercury Rev song Chains shows the structure of the MIDI files. Channel 1 contains the main melody
and channel 2 contains the chords.

Hk be a set of relative distances to the bass note of the
k’th chord, and let E be the set containing the notes we
want to extract. Then we can get the simplified chord Sk

as

Sk = Hk ∩ E (3)

For non-dominant chords, we will use

Enon-dom = {3, 4, 6, 8, 10, 11} (4)

and for dominant chords we will use

Edom = {1, 4, 8, 10} (5)

Using these sets, all the important notes from the chords
depicted in column 2 and column 3 in Table III can be
extracted.

Example: From the chord {2, 4, 7, 10}, corresponding
to a major 9 chord, the important notes are the third and
the seventh:

Sk = {2, 4, 7, 10} ∩ {1, 4, 8, 10} (6)
= {4, 10} (7)

HC9 = {2, 4, 7, 10} (8)

HC7[9 = {1, 4, 7, 10} (9)

HCmMaj9 = {2, 3, 7, 11} (10)

Sk = {2, 3, 7, 11} ∩ {3, 4, 6, 8, 10, 11} (11)
= {3, 11} (12)

Example: From the chord {1, 4, 7, 10}, corresponding
to a major 7[9 chord, the important notes are the third,
the seventh and the [9:

Sk = {1, 4, 7, 10} ∩ {1, 4, 8, 10} (13)
= {1, 4, 10} (14)

By this method we get a simpler chord without the ninth
and fifth as depicted in Figure 3, which are not important
for the harmony.

For chords without a third, we would like to simplify
extended slash chords to the simple forms in column 1 in
Table III. We use the relative representation given in Table

!
C9

""""
" C7

"""
C7

""" """ # #
$

a)

"
b)

" " " # #

Figure 3. Feature extraction for the chords. a) Original C9 chord. b)
Chord after feature extraction, which resolves to C7 without the fifth.

Power and sus chords Relative representation
sus4 {5,7}

7sus4 {5,10}
7[9sus4 {5,10}

sus2 {2,7}
7sus2 {2,10}

5 (power chord) {7}

Table IV
RELATIVE REPRESENTATION FOR SUS2, SUS4 AND POWER CHORDS.

IV and the representation for sus and power chords in the
third column in Table II.

To find the simplified representation, we perform the
following nearest distance set difference: Let again Hk

be a set of relative distances to the bass note of the k’th
chord and let Cm be the set of relative distances to the
bass note for the chords m = 1, . . . ,M , where M = 13
is the number of different chords in column 1 in Table
III. Then the simplified slash chord Cm, for which the set
difference with Hk is smallest, is given by

{CI |I = argmin
m=1,2,...,M

‖Hk \ Cm ∪ Cm \Hk‖} (15)

If two or more of these set differences contain the same
number of elements, we give first priority to the chord
containing a minor seventh. This ensures, that the 7sus4
with a fifth present and a 7sus4 13 chord will map
to {5,10} instead of {5,7} and {5,9} (sus4 and I/V),
respectively.

Example: For simplicity, we will only consider the
major slash chords from Table II in this example. Given
a chord Cmaj7/D with the representation {2, 5, 9, 10}

respective to bass note ‘C’, we get

{2, 5, 9, 10} \ {2, 5, 10} ∪
{2, 5, 10} \ {2, 5, 9, 10} = {9}

{2, 5, 9, 10} \ {3, 8} ∪
{3, 8} \ {2, 5, 9, 10} = {2, 3, 5, 8, 9, 10}

{2, 5, 9, 10} \ {2, 7, 11} ∪
{2, 7, 11} \ {2, 5, 9, 10} = {5, 7, 9, 10, 11}
{2, 5, 9, 10} \ {6, 10} ∪
{6, 10} \ {2, 5, 9, 10} = {2, 5, 9}
{2, 5, 9, 10} \ {5, 9} ∪
{5, 9} \ {2, 5, 9, 10} = {2, 10}

{2, 5, 9, 10} \ {2, 6, 9} ∪
{2, 6, 9} \ {2, 5, 9, 10} = {5, 10}
{2, 5, 9, 10} \ {1, 5, 8} ∪
{1, 5, 8} \ {2, 5, 9, 10} = {1, 2, 8, 9, 10}

and we see that the nearest chord is {2, 5, 10}, correspond-
ing to the slash chord I/II, which is resolved to the absolute
chord C/D.

IV. MELODIC FEATURES

The observable variables in the hidden Markov model
correspond to the melody line above each chord, so we
need a way to extract the important melody notes. A time
window is placed above each chord indicating which notes
to be considered as important. This time window can be
chosen in different ways as seen in Figure 5. Here we
see three possible options, two of which are constant: A
half measure (shown as a solid line) and a whole measure
(shown as a dashed line). Since we place chords with
constant duration (either a half or a whole measure) when
generating harmonisations, having a constant time window
with equal length when extracting importance notes should
keep a good correspondence between the input features
and the database features. As seen in Figure 5, using a
window that is larger than the length of the chord results
in extracted melody notes that belongs to the next chord.
On the other hand, using a window that is too small, we
may miss important notes. Using a varying time window
is problematic, since we use a constant time window in
the input melody and hence the foundation for comparing
the melody sequences is not fair.

We have chosen to use a fixed time window, where
chords in the database with a duration smaller than the
desired chord duration are disregarded. For chords with
a greater duration, the corresponding melody line is cut
of at the chosen duration and the rest of the melody is
discarded.

Having chosen a proper time window, we have to choose
which of the notes to extract. We could extract all notes,
but often some notes are more important than others for
determining the harmonic context. For melody lines with
chromatic motifs, the notes on the offbeats will often be
notes not determining the underlying chord, and therefore

it can be favourable only to extract the notes on the
downbeats (e.g. 4/4 notes). On the contrary, we may be too
rough and throw away the characteristics of a composer
for choosing a specific chord and therefore extracting all
eight notes could capture these details. Whether to use
quarter note or eighth note quantisation is a parameter
that is dependent on the input melody. An example of an
eighth note quantisation is seen in Figure 4. We see that
while some details are lost due to the quantisation, the
overall idea of the melody is retained.

After quantising the melody the remaining notes placed
within the time window are extracted. Any information
about octave for each note is disregarded before feeding to
the HMM. This ensures that to notes lying one octave apart
are still measured as the same note. Thus we end up with
features being a list of relative note values corresponding
the the notes placed on the downbeats (or the eighths)
within the time window above each chord.

A. Nearest neighbour

When extracting features for the input melody we have a
constant chord duration for all the generated chords, so we
can quantise and extract notes exactly as described above
with the given duration. But before feeding the features to
the HMM we perform one final step: A nearest neighbour
transformation. The distance measure is simply the length
of the set difference between the input melody feature
and the features from the database. Let MI,k denote the
melody features of the input melody for the k’th chord and
let Mdb,l denote the melody features for the l’th chord in
the database. Thus the distance between between MI,k

and Mdb,l is

δk,l = ‖(MI,k \Mdb,l) ∪ (Mdb,l \MI,k)‖ (16)

This distance is calculated between each sequence in the
melody corresponding to the chord l to insert, and each
sequence in the database corresponding to the chord k.
The input melody feature is replaced with the nearest
neighbour from the database. This ensures that the feature
given to the HMM is something that is actually present in
the database. In case of a tie we choose randomly among
the melody parts of equal distance. An example of the
nearest neighbour calculation is shown below.

Example: Let MI,k = {A,D,G} and Mdb,k =
{A,G,C, F}, then δk,l is given by

δk,l = ‖({A,D,G} \ {A,G,C, F})
∪ ({A,G,C, F} \ {A,D,G})‖

= ‖{D} ∪ {C,F}‖
= ‖{D,C, F}‖
= 3

V. RESULTS

Judging the performance of the Cremo harmoniser is
not a trivial task since harmonisations in rhythmic music
are not bound by strict rules that we can validate. Also,
what sounds harsh and challenging for some might sound

!!
!!

Orig. mel

Quan. mel

!
!
" #

And we

$% $
live

$
in a beau-

$ $
ti- ful world

$ $ $ $ $ $ $ $ &

" # $% $ $ $ $ $ $ $ $ $ $ &$ $ $ $
4

Orig. mel

Quan. mel

!
!
" #

yeah we

$'
do

$ $
yeah we do.

$ $ $ $ $ "
We live

$' $
in a beau-

$ $
ti- ful world.-

$ $ $ $ $ $ $ $

" # $' $
Figure 4. An example of the melody quantisation into eighth notes. Notice that quarter notes are split into two eighth notes and sixteenth notes are
removed.

Figure 5. Three possibilities for extracting the melody corresponding to
the chord in beat 1 is shown. The solid line shows the notes extracted for
a half measure, the dashed line shows the the notes extracted for a whole
measure, where the dotted line shows the extracted notes corresponding
to the length of the chord. We see that extracting a whole measure results
in the melody for another chord in beat 4 to be included for the chord
in beat 1, which may not be an optimal choice.

interesting and intriguing to others, especially in the jazz
genre. So in order to test Cremo we look at the effect
of the harmonic feature extraction and perform a simple
music theoretical analysis on three harmonisations.

A. Feature extraction for the chords

In Figure 6 we see all the different chords for the
melodic rock and standard jazz database plotted against
the number of occurrences for each chord. The left column
shows the chords as they are in the database and the
right column shows the chords after being simplified by
the feature extraction method described in Section III.
We clearly see a reduction in the number of different
chords around 60 %, which gives the HMM method more
possibilities for making more rational harmonisations due
to the reduced dimensionality.

B. Harmonisations

Our training data1 is derived from tunes in the two
genres melodic rock and standard jazz. The melodic rock
genre consists of 86 tunes composed by Coldplay, Radio-
head, Muse, Jeff Buckley and Mercury Rev, whereas the
standard jazz genre consists of 43 tunes composed and/or
performed by Bill Evans, Charlie Parker, John Coltrane,
Miles Davis, Thelonious Monk and Wayne Shorter.

1The database is constructed by scanning music sheets and adjusting
them to the format of Cremo.

We have generated three harmonisations on three
different melodies, two in the melodic rock genre and
one in the standard jazz genre2.

1) Harmonisation of “Burma”: In Figure 7 the har-
monisation of the tune Burma composed by Börsenfieber
can be seen. The parameters used are 2 chords per bar, 8th
note quantisation and a fixed time window of 1 bar with
feature extraction on the chords. All artists in the melodic
rock genre are used.

In bar 1-6 we see that the harmonisation has made use
of many tonic, subdominant and dominant chords, where
the first dominant chord in the 6th bar is suspended and
resolved musically in the following chord. In bar 7-12
we modulate to the parallel key, namely Am, where the
subdominant chord Dm and the dominant chord E is
used. This is an interesting choice, since the original
harmonisation is clearly in the key of C major, but
since the dominant chord E does not clash with the
melody, this is a completely valid choice. In bar 13-20
the harmonisation modulates back to the original key of
C, although the chords D and A are major chords, but
again, since no notes F and C are present in the melody
for the chord D and A, respectively, this is a valid choice.
Notice that the bass line is very coherent with few big
intervals, giving smooth transitions between the chords.

2) Harmonisation of “KTAS Blues”: In Figure 8 the
harmonisation of the tune KTAS Blues composed by
Christian Munch can be seen. The parameters used are
1 chords per bar, 8th note quantisation and a fixed time
window of 1 bar with feature extraction on the chords. All
artists in the standard jazz genre are used.

This is a bluesy tune with the characteristics of using
both minor and major thirds on the tonic chord. Normally,
a major seventh chord is used on tonic, subdominant and
dominant chords, but here we see that Cremo has chosen
to use a completely different approach possibly because
of the sparse number of jazz blues in the database and
that the tune is not in the typical style of blues. In general
there are many harsh notes clashing with the chords, but

2The harmonisations in MIDI format can be downloaded from
http://cremo.nikolasborrel.com.

0 20 40 60 800

100

200

300

Chord types

N
um

be
r o

f c
ho

rd
s

Original chords for jazz database

0 5 10 15 20 25 300

200

400

Chord types

N
um

be
r o

f c
ho

rd
s

Simplified chords for jazz database

(a) (b)

0 20 40 60 800

500

1000

1500

Chord types

N
um

be
r o

f c
ho

rd
s

Original chords for melodic rock database

0 5 10 15 20 25 300

1000

2000

Chord types

N
um

be
r o

f c
ho

rd
s

Simplified chords for melodic rock database

(c) (d)
Figure 6. Number of chords for each chord type. a) The original chords for the tunes in the jazz genre consisting of 93 different chords. b) The
simplified chords for the tunes in the jazz genre after feature extraction consisting of 31 different chords. c) The original chords for the tunes in the
melodic rock genre consisting of 87 different chords. d) The simplified chords for the tunes in the jazz genre after feature extraction consisting of 29
different chords.

!!
!!
!!

Copyright (c) Börsenfieber

Burma

"
C# ## # ! F#$

C##% &
G

' #$ #####
F# # C% & # # # ! Gsus4#$ # # % G

&
Am

' #$
E

####

" %% %% %% %% %% %% %% %% %% %% %%% %% %% %%(
) % % % % % % % % % % % % % %

8

"
Dm

%
Am

& ' #$
E

##
Dm

%
Am

& ' #$
E

##
Am

%
C

&
D

' ##
C## C/E# # ## ' #$

F# #####

" %% %% %% %%(%% %% %% %%(%% %% %%(%% %%% %%
) % % % % % % % % % % % % % %

15

"
C

' #$ #
' #$

Dm7## C# ### ' ##
Bb## A# ### ' #$

F## C#### ' #$ #
' #$

" %% %% %% %%% %% %%* %% %% %% %% %% %%
) % % % % % %* % % % % % %

21

" + + + +

" + + + +
) + + + +

25

" + + + +

" + + + +
) + + + +

Figure 7. The harmonisation of the tune “Burma” composed by Börsenfieber using all artists in the melodic rock genre.

!!
!!
!!

Copyright (c) xxxx Copyright Holder

KTAS Blues

"#
Gm7

$ % %& % % $
Fma7

% %& % % $
Ebma7

% % % % $ % $
Bbm7

%# ' $
Gm7

$ % %& % % $

"# (((((((((# (((## (((
)# (((# ((

6

"#
C7

% %& % % $
Fm[ma7]

% % % %& % %* %+ % ! ' %+ , $
C7

$ % %& % % $
Fm7

% %& % % $ % %
"# ((((((# (((# ((((((##
)#

(((((
11

"#
Ebma7

% % $ % $
Bbm7

%# ' $
Gm7

$ % %& % % $
Fm7

% %& % % $
E13sus4

% % $ %# %* %& % %&6

"# (((# (((## ((((((## (((&
)#

(# ((((
Figure 8. The harmonisation of the tune “KTAS Blues” composed by Christian Munch using all artists in the standard jazz genre. Be aware that
the E13sus4(omit9) chord corresponds to the chord A/E.

!!
!!
!!

Copyright (c) xxxx Copyright Holder

Nils

"###
Eb7

$ % &'
Eb

& & & ! &(& ! Ebma7

&') &' &
Ab

&') &' &
Ebma7

&') & & & &
"### ***# ** *** ** ***
+### * * * * *

6

"###
Ab

& ! &(& ! Ebma7

&') &' &
Ab

&') &' & &')
Absus4

& & & & *

"### ** *** ** ** **,
+### * * * * *

11

"###
Ab& ! &(& ! Bb&(&(& !)

Eb/G

&(% %
&(& ! Cm

&(& ! &(& ! Dm7(b5)&(&(% % &(&(&
C&(* C&*

"### ** ** ** ** *** **- **,-
+### * * * * * * *

Figure 9. The harmonisation of the tune “Prins Na Na” composed by Nils Bouchet using only the artist Jeff Buckley.

in many cases these notes are placed on the offbeat and
therefore it sounds fine with a jazzy vibe. In bar 1-3
we have a whole tone descending movement where the
important thirds correspond to the chosen chord and a
nice]11 melody note has been chosen for the E[maj7
chord. A characteristic II-V-I progression in minor can be
seen in bar 5-8, where the chord FmMaj7 fits perfectly
to the melody notes. In bar 9 and 10 we have a V-I
progression to minor, though a minor 7 is used for the
tonic chord clashing with the melody note E. This is
also the case in the 14th bar, where also the third of
the melody is clashing with the chord. The melody in
the last bar makes heavy use of leading-notes to the
important notes E, A and C], but Cremo sees through
this by choosing a chord with a prim, fourth and seventh
note corresponding to these notes.

3) Harmonisation of “Prins Na Na”: In Figure 9 the
harmonisation of the tune Prins Na Na composed by Nils
Bouchet can be seen. The parameters used are 1 chord per
measure, 8th note quantisation and a fixed time window
of 1 bar without feature extraction on the chords. Only the
artist Jeff Buckley is used.

In the first 11 bars only tonic and subdominant chords
are used – which fits the melody – except for a misplaced
E[7 dominant chord in the first bar. Also a suspended
chord in the 11th bar is well-resolved in the following
bar reaching its climax on the dominant chord in the 12th
bar leading to a tonic chord with the third in the bass. In
bar 13 and 14 Cremo modulates to the parallel key Cm
and introduces the progression Im-IIm7b5. Surprisingly,
Cremo changes the minor key to major and finalise with
an augmented chord that never resolves.

VI. CONCLUSION AND FURTHER WORK

Cremo, an automatic harmoniser, has been implemented
and tested. Harmonisations of a given input melody in
the style of a specific genre can be generated by doing
probabilistic analysis on a database using hidden Markov
models in which we model a piece of music as a series
of chords forming a Markov chain, where each chord
emits a melody line. In order to do this, we perform
a series of feature extraction steps on both the chords
and melody of the database pieces and input melody.
The feature extraction on the chords cuts the number of
possible chords down about 60 % thereby making it easier
for the HMM to choose the proper chords.

The feature extraction for the melody lines makes it
possible for us to measure similarity between two melody
parts without sacrificing too much of the uniqueness of
the individual parts. This gives us a way to compare
melody parts of the input melody with parts in the database
and substitute the input part with a similar part from the
database thereby helping the HMM to choose a good
chord.

Three different input melodies have been harmonised
by Cremo and analysed. Cremo is able to generate chords
that fits the melody with no or very few clashing tones

and it even recreates common chord progressions from
the different genres. For example, the jazz harmonisation
contains a classic minor II-V-I progression. The method
is not perfect, though, as Cremo also makes some
challenging choices from time to time, e.g. changing
from minor to major in the final two chords of the tune
“Prins Na Na” or by placing single out-of-tune chords
at different places. In general, Cremo is able to generate
harmonisations that fit the given genre and that match the
input melodies.

Since the chords are assumed to form a first-order
Markov chain the algorithm will only consider the pre-
vious chord along with the melody when choosing the
current chord. By placing dependence on chords to, say,
the two or three previous chords should make chord
progressions more consistent and true to the given genres.
Also, instead of finding the best fitting chord sequence
using Viterbi, a Monte-Carlo sampling could be performed
instead. This would make the method able to generate
several different harmonisations with the same parameters.

The harmonisation method is constructed in such a way
that it will be able to harmonise melodies in any genre,
as long as a training set in the given genre is present in
the database. Therefore more testing on the performance
of different genres would be interesting.

REFERENCES

[1] M. Allan and C. K. I. Williams, “Harmonising chorales by
probabilistic inference,” 2005.

[2] D. Hörnel and W. Menzel, “Learning musical structure
and style with neural networks,” Computer Music Journal,
vol. 22, no. 4, pp. 44–62, Winter 1998.

[3] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer Science, 2006.

