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Abstract
Realistic sound is essential in virtual environments, such as computer games, virtual and aug-
mented reality, metaverses, and spatial computing. The wave equation describes wave phe-
nomena such as diffraction and interference, and the solution can be obtained using accurate
and efficient numerical methods. Due to the often demanding computation time, the solutions
are calculated offline in a pre-processing step. However, pre-calculating acoustics in dynamic
scenes with hundreds of source and receiver positions are challenging, requiring intractable
memory storage.

This PhD thesis examines novel scientific machine learning methods to overcome some
of the limitations of traditional numerical methods. Employing surrogate models to learn the
parametrized solutions to the wave equation to obtain one-shot continuous wave propagations
in interactive scenes offers an ideal framework to address the prevailing challenges in virtual
acoustics applications. Training machine learning models often require a large amount of
data that can be computationally expensive to obtain; hence this PhD thesis also investigates
efficient numerical methods for generating accurate training data.

This study explores two machine learning methods and one domain decomposition method
for accelerating data generation. (1) A physics-informed neural network (PINN) approach is
taken, where knowledge of the underlying physics is included in the model, contrary to tradi-
tional ‘black box’ deep learning approaches. A PINN method in 1D is presented, which learns
a compact and efficient surrogate model with parameterized moving source and impedance
boundaries satisfying a system of coupled equations. The model shows relative mean errors
below 2%∕0.2dB and proposes a first step towards realistic 3D geometries. (2) Neural opera-
tors are generalizations of neural networks approximating operators instead of approximations
of functions typical in deep learning. The DeepONet is a specific framework used in this the-
sis for operator learning applied to approximate the wave equation operators. The proposed
model enables real-time prediction of sound propagation in realistic 3D acoustic scenes with
moving sources, avoiding the offline calculation and storage of impulse responses. Our com-
putational experiments, including various complex 3D scene geometries, show good agree-
ment with reference solutions, with root mean squared errors ranging from 0.02 Pa to 0.10
Pa. Notably, our method signifies a paradigm shift as no prior machine learning approach has
achieved precise predictions of complete wave fields within realistic domains. (3) A rectangu-
lar domain decomposition method is proposed, enabling error-free sound propagation in the
bulk of the domain consisting of air. The Fourier method exploits the known analytical solu-
tion to the wave equation in the rectangular domain with near-optimal spatial discretization
satisfying the Nyquist criterium via the Fast Fourier Transform for calculating derivatives. By
coupling the Fourier method with the spectral element method (SEM) near the boundaries,
the method is capable of handling complex geometries with the caveat of introducing errors
at the coupling interface. A significant speed improvement is reported for a 1D domain when
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Abstract

the domain decomposition method is used instead of the SEM running in the full domain.

Keywords: virtual acoustics; physics-informed neural networks (PINNs); neural operators;
DeepONet; transfer learning; domain decomposition; Fourier methods; spectral element method;
high-performance computing; real-time computing.
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Resumé
Realistisk lyd er afgørende i virtuelle miljøer som computerspil, virtuel og udvidet virke-
lighed (VR/AR), metaverser og ‘spatial computing’. Den akustiske bølgeligning beskriver
fænomener som diffraktion og interferens, og kan løses effektivt og nøjagtigt med numeriske
metoder. Da løsningerne ofte er beregningstunge, beregnes disse i et præ-processeringsstep.
Dog er præ-beregning af akustik i dynamiske scener med hundreder af kilde- og modtagerpo-
sitioner udfordrende, da det kræver stor lagerkapacitet.

Dette ph.d.-projekt undersøger nyskabende videnskabelige metoder til maskinlæring med
det formål at overvinde nogle af begrænsningerne i traditionelle numeriske metoder. Ved at an-
vende surrogatmodeller til at lære parametriserede løsninger af bølgeligningen kan fremkaldelsen
af bølgeudbredelsen i interaktive scener ske med en enkelt forespørgsel og er derfor en ideel
teknik til håndtering af de nuværende udfordringer inden for anvendelser i virtuel akustik.
Træning af maskinlæringsmodeller kræver ofte store mængder data, der kan være beregn-
ingsmæssigt dyrt at generere; derfor undersøger dette ph.d.-projekt også effektive numeriske
metoder til at generere præcise træningsdata.

To maskinlæringsmetoder og en domæne-dekompositionsmetode til mere effektiv data-
generering er blevet udforsket i denne undersøgelse. (1) En metode kaldet physics-informed
neural network (PINN) er anvendt, hvor viden om den underliggende fysik er inkluderet i
modellen. Dette står i modsætning til traditionelle dybe neurale ‘black box’ netværk. En
PINN-metode i 1D præsenteres, hvor en kompakt og effektiv surrogatmodel med parametris-
erede bevægelige lydkilder og impedans-randbetingelser lærer et system af koblede ligninger.
Modellen har relative gennemsnitlige fejl under 2%∕0.2dB og foreslås som et første skridt
mod realistiske 3D-geometrier. (2) Neurale operatorer er generaliseringer af neurale netværk,
der approksimerer operatorer i stedet for funktioner typisk for dybe neurale netværk. Deep-
ONet er en specifik metode til operator-læring og er blevet anvendt i dette ph.d.-projekt til at
approksimere bølgeligningsoperatorer. Den foreslåede model muliggør realtidsforudsigelser
af lydudbredelsen i realistiske 3D-scener med bevægelige lydkilder og undgår dermed offline-
beregninger samt lagring af de beregnede impulsresponser. Vores beregningsmæssige eksper-
imenter, inklusiv diverse komplekse 3D-geometrier, viser god overensstemmelse med reference-
løsninger, med kvadratisk middelfejl (RMSE) på mellem 0.02 Pa og 0.10 Pa. Vores metode
repræsenterer et paradigmeskift, da ingen tidligere maskinlæringsmetode har opnået præcise
forudsigelser af fuldstændige bølgefelter i realistiske domæner. (3) En rektangulær domæne-
dekompositionsmetode er blevet foreslået, der muliggør fejlfri lydudbredelse i størstedelen
af domænet tilsvarende luft. Fourier-metoden udnytter en diskretisering af den kendte an-
alytiske løsning på bølgeligningen i det rektangulære domæne med næsten-optimal rumlig
diskretisering i overensstemmelse med Nyquist-kriteriet via den hurtige Fourier transforma-
tion til beregning af de afledte. Ved at koble Fourier-metoden med spektralelement-metoden
(SEM) nær grænserne er metoden i stand til at håndtere komplekse geometrier, dog med det
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Resumé

forbehold, at fejl introduceres ved koblingsgrænsefladen. En betydelig hastighedsforbedring
er rapporteret i et 1D-domæne, når domæne-dekompositionsmetoden er anvendt i stedet for
SEM i hele domænet.

Nøgleord: virtuel akustik; fysik-informerede neural netværk; neurale operatorer; DeepONet;
lærings-overførsel; domæne-dekomposition; Fourier-metoder; spektralelement-metode; høj-
tydende databehandling; realtidsberegning.
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CHAPTER 1

Introduction
1.1 Motivation
Reproducing the acoustics of our surroundings is pivotal for realistic and immersive expe-
riences in virtual environments. Humans interact with their surroundings in a multisensory
manner, where auditory cues collectively give humans a rich understanding of their surround-
ings. These cues (Plack 2018) involve the ability to localize sound sources using the differ-
ences in arrival time and intensity between ears together with the directivity pattern of the ears;
estimate distances from intensities and spectral contents; gather information from the rever-
beration about the size, shape, and material properties of a space; and perceive the movement
of sound sources by tracking changes in loudness, frequency content, and timing of sound.

Virtual acoustics is a widely used term referring to the simulation and replication of realis-
tic acoustic environments modeled using algorithms and digital signal processing techniques.
The aim is to recreate the auditory cues to give the listener the impression of being in a spe-
cific physical space. This has many applications in computer games, virtual reality (VR),
augmented reality (AR), and architectural acoustics. Historically, auditory reproduction has
been neglected compared to visual reproduction due to hardware limitations, where game
developers had to prioritize resource usage. However, virtual acoustics is gaining more and
more attention these days, driven especially by big tech companies. Meta has one of the
largest audio research teams in the world (Meta 2020) investing heavily in the ‘metaverse,’
where one of the challenges is to adapt sound sources originating from other environments
to the physical environment in which the sound has to be reproduced; Meta also introduced
the Ray Ban Stories (Meta 2021) smart-glasses allowing users to capture a moment with the
build-in camera or listen to music; Apple has probably been the largest driver in coining the
term ‘spatial audio’ for the broader audience referring to the technique of creating and repro-
ducing sounds in a 3D space through the support of the AirPod Pro earbuds (Apple 2022)
for enriching films and music; and lately, spatial computing1 (Greenwold 2003) has entered
the scene with the Quest 3 and Quest Pro by Meta (Meta 2022) and the Vision Pro by Apple
(Apple 2023).

With spatial computing, the trend is toward more immersive experiences where auditory
perception will be crucial. There are currently two main approaches to interactive virtual
acoustics: an entirely dynamic scenario with real-time acoustic simulations; or pre-calculated
acoustics with conditions defined in a prior stage. For an entirely dynamic scenario, geomet-
rical acoustics (GA) (Savioja et al. 2015) are typically applied due to their capabilities of exe-
cuting below a real-time threshold of around 100 ms (Sandvad 1996). Several state-of-the-art
methods exist focusing primarily on computer games (Wefers et al. 2018; Pelzer et al. 2014;

1The term ‘spatial computing’ was defined in 2003 by Simon Greenwold as ‘human interaction with a machine
in which the machine retains and manipulates referents to real objects and spaces.’
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1 Introduction

Lauterbach et al. 2007; Schröder 2011) with implementations in academic tools, e.g., RAVEN
(Raven 2023) and commercial tools, e.g., Oculus spatializer (spatializer 2023), Steam Audio
(Audio 2023), Google Resonance (Resonance 2023), Audiokinetic Wwise (Wwise 2023), and
FMOD (Fmod 2023). Requiring real-time evaluation poses an accuracy limit for such meth-
ods. When fully dynamic scenes are not required, the so-called wave-based methods can be
applied, taking the underlying physics into account in terms of the wave equation

𝜕2𝑝(𝐱, 𝑡)
𝜕𝑡2

− 𝑐2∇2𝑝(𝐱, 𝑡) = 𝐹 (𝐱, 𝑡), 𝑡 ∈ ℝ+, 𝐱 ∈ ℝ𝑁 , (1.1)

where 𝑝 is the pressure (Pa), 𝑡 is the time (s), 𝑐 is the speed of sound in air (m/s), 𝐹 (𝐱, 𝑡)
is a forcing function and 𝑁 is the dimensionality. Initial and boundary conditions should
also be defined, determining the initial sound and the materials on the surfaces. Wave-based
methods can be implemented by discretizing the domain in a grid of points where impulse
responses for all source/receiver pairs are pre-calculated. Several state-of-the-art methods
exist within acoustics such as finite element methods (FEM) (Okuzono et al. 2014), spectral
element methods (SEM) (Pind et al. 2019), discontinuous Galerkin finite element methods
(DG-FEM) (Melander et al. 2020) and finite-difference time-domain methods (FDTD) (Bot-
teldoorena 1995; Hamilton et al. 2017). The number of commercial tools for the wave-based
method is more limited compared to GA methods. Microsoft has been promoting ‘Project
Acoustics’ (Microsoft 2023) as a plugin for Unity (Unity 2023) and Unreal (Unreal 2023)
game engines for physically modeling how sound propagates within a scene taking its shape
and materials into consideration and Treble Technologies (Treble 2023) recently introduced a
new software tool for architectural design for accurately and efficiently simulating the acous-
tics allowing the user to experience the acoustics auditorily. One limitation of these methods
is the necessity to store a large number of impulse responses, which can lead to significant stor-
age requirements. As a result, there might be a trade-off that involves reducing the flexibility
of the scene.

1.2 Scope for this work
This PhD study aims to develop efficient and accurate methods for reproducing the acous-
tic sound field in dynamic virtual environments with moving sources without the need for
offline pre-calculating and storing all source/receiver impulse response pairs. The target ap-
plications are in the field of virtual and augmented reality, computer games, metaverses, and
spatial computing. The study is particularly concerned about sound fields in closed cavities,
such as rooms and buildings, where the boundary geometry and material properties are con-
sidered, focusing on accurately modeling the lower frequency sound field. Two main ideas
are explored:

• We investigate if scientific machine learning models can accurately and efficiently pre-
dict the acoustic sound field in dynamic scenes with moving sources. By learning a
compact and efficient surrogate model, impulse responses for any source/receiver pair
should be predicted in real-time to be useful for the virtual acoustics applications of

2



1.3 Thesis structure

interest. This is a paradigm shift compared to traditional numerical methods, where
impulse responses for all source/receiver pairs are calculated offline and stored in a
lookup table. The study corresponds to Paper A, Paper B, and Paper C.

• We investigate if domain decomposition methods can improve the efficiency of numer-
ically solving the wave equation. Solving the wave equation is computationally ex-
pensive, even when using state-of-the-art numerical methods. In room acoustics, the
predominant medium is air. By decomposing the domain into rectangular partitions
consisting of air and geometrically flexible partitions near the boundaries, specialized
methods can be employed in each partition. The study corresponds to Paper D.

1.3 Thesis structure
The present PhD thesis is based on a collection of scientific articles: Paper A to Paper D. Paper
A is published in a scientific journal (‘Editor’s Pick’); Paper B is submitted to a high-impact
journal; and Paper C and Paper D are conference articles. Additionally, Report A comple-
ments Paper D with additional information, and Report B includes background material for
discontinued research. The rest of the thesis is organized as follows: Chapter 2 discusses the
requirements for the applications of interest, outlines the assumptions, and gives an overview
of current state-of-the-art methods; Chapter 3 discusses important features numerical meth-
ods should possess and explains the reasoning for researching domain decomposition methods
and summarizes the interface handling; Chapter 4 introduces scientific machine learning and
discusses how to overcome the challenges of handling dynamic scenes; and Chapter 5 presents
conclusions drawn from the PhD study and discusses potential next steps of research.
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CHAPTER 2

Requirements, assumptions, and
methods for interactive

applications
2.1 Requirements and assumptions
We have divided the requirements for games, VR/AR, and spatial computing applications
into four groups: Usability, Interactivity, Authenticity, and Resource Usage. The usability
requirements are related to the preparation of the environment and the user handling this (typ-
ically a sound designer); the interactivity requirements relate to how much the environment
can change at run-time; the interactivity requirements are related to the acoustical details the
user needs for the given application; and the resource usage requirements are related to the
specific hardware and how much resources are being allocated to the auditory parts. Each of
the requirements is considered below:

Usability. In current game and AR/VR development workflows, sound designers are often
burdened with manually setting trigger boxes and designing filters for the space’s acous-
tics (Turner et al. 2022). Our developed methods aim to automate some of these cum-
bersome tasks, freeing up more time for sound designers to focus on artistic aspects.
By preparing scenes with boundary materials and geometries, our automated methods
should enable sound designers to retrieve real-time impulse responses that accurately
reflect the room conditions.

Interactivity. The scenes in these applications can be highly dynamic, with numerous mov-
ing sound sources and receivers. Moreover, the geometry may change at runtime due
to actions like opening/closing doors, moving/removing walls, and altering obstacles.

Authenticity. While exact physical reproduction is not necessary, the acoustical properties
of the environment should provide plausible and realistic soundscapes. Smooth sound
field transitions are crucial when sound sources and receivers move within the scene.

Resource Usage. Games have strict computation and storage efficiency requirements, with
most resources allocated to the graphics pipeline, leaving limited resources for audio
processing. The typical budget for storing auditory assets, including impulse responses,
is in the hundreds of MB, and audio calculations must be kept under a certain time
threshold per frame.

5



2 Requirements, assumptions, and methods for interactive applications

Continuing from the introduction, the simulation methods for acoustic sound fields can be
divided into geometrical acoustics (GA) and wave-based methods. GA approximates sound
propagation as rays, neglecting wave phenomena like diffraction and interference. It assumes
that sound rays travel in straight lines until they interact with obstacles, where they may be
reflected, absorbed, or transmitted. This approximation is valid when the sound wavelength
is much smaller than the obstacles, i.e., well above the Schroeder frequency. GA methods are
more computationally efficient than wave-based methods but lack accuracy in certain scenar-
ios.

On the other hand, wave-based methods account for the full wave nature of sound, con-
sidering diffraction, interference, and scattering by numerically solving the underlying wave
equation. However, these methods demand extensive computation time and require the do-
main to be discretized well above the Nyquist limit to minimize discretization errors.

The choice between GA and wave-based methods depends on the available computational
budget and the required accuracy. For applications where realistic simulations of the lower
frequency sound field are essential, wave-based methods are preferred, as they can capture
the full sound field accurately. Along with the requirements for the applications of interest,
we have made the following assumptions:

Assumption 1 To accommodate the computational demands, we allow for offline calcula-
tions, spreading the computational burden between a pre-processing step and run-time.

Assumption 2 Additionally, we recognize the importance of accurately modeling the lower-
frequency sound field to enhance the immersive experience in our applications (Brinkmann
et al. 2019; Pind, Finnur 2020) and for the interaural time difference for source local-
ization (Wightman et al. 1992).

Since realistic simulations of the lower frequency sound field are required and cannot be
accurately modeled with GA, this work has focused on methods capturing the full sound field.
This is typically done by approximating the acoustic wave equation by numerical methods. In
the next section, we address the challenges of pre-calculating sound fields using numerical
methods in the following section.

2.2 Limitations of numerical methods
Even when using efficient wave-based methods, the IRs must be calculated offline due to the
computational requirements when real-time applications spanning a broad frequency range
are considered. However, for dynamic, interactive scenes with numerous moving sources
and receivers, the computation time and storage requirement for a lookup database become
intractable (in the gigabytes range) since the IR is calculated for each source-receiver pair.
Figure 2.1 shows the computation time for a 9×3×7 m3 room using our efficient in-house DG-
FEM solver (Melander et al. 2020) with a spatial resolution of five points per wavelength (𝜆)
using fourth-order polynomial basis functions running on an Nvidia V100 graphics processing
unit (GPU). Due to the curse of dimensionality, the number of grid points grows cubically
in three spatial dimensions with respect to spatial discretization (see Table 2.1), which is
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250 Hz

500 Hz

1000 Hz

2000 Hz

4000 Hz

20s

2h36m

23h14m

16m56s

02m19s

Figure 2.1: Computation time with respect to frequency range when solving the wave-
equation running the GPU accelerated DG-FEM solver (Melander et al. 2020) with 5 points
per wavelength in a room of size 9 m × 3 m × 7 m = 189 m3.

determined by the frequency range. This dependency between the grid resolution and the
frequency range causes the calculation time to grow rapidly with frequency. The number of
IRs required for all source and receiver combinations in a cubic domain with length 𝐿𝑥𝑦𝑧 and
the number of mesh points 𝑁 can be calculated as

𝑁 =
⌈𝐿𝑥𝑦𝑧

Δ𝑥

⌉3
, (2.1a)

#IRs = 𝑁2 , (2.1b)

yielding the asymptotic growth of 6th order in the domain size (𝐿6
𝑥𝑦𝑧) as well as the spatial

resolution (Δ𝑥−6). This growth can quickly get intractable and becomes even more exten-
sive when approaching the full audible frequency range. The storage requirement for the same
room spanning frequencies up to 4 kHz is depicted in Table 2.2. We assume IRs of length
0.5s spanning frequencies up to 𝑓max = 1000 Hz. When distributing the source and receiver
positions in a uniform grid with a resolution at the Nyquist limit Δ𝑥 = 0.1715 m, 4.7 million
IRs are to be stored, requiring 9 GB of storage when 16-bit floating point precision is used.
Using a coarser mesh discretized at Δ𝑥 = 𝜆1000Hz = 0.343 m, 35,721 IRs are to be stored,
requiring 612 MB of storage. The grid resolution is important for an accurate reconstruction
of the IRs between mesh points when the source and receivers are allowed to move freely in
the domain. Previous attempts to overcome the storage requirements of the IRs include work
for lossy compression (Raghuvanshi et al. 2014), and lately, a novel portal search method
has been proposed as a drop-in solution to pre-computed IRs to adapt to flexible scenes, e.g.,
when doors and windows are opened and closed (Raghuvanshi 2021).

Grid nodes / m3

Δ𝑥 250 Hz 500 Hz 1,000 Hz 2,000 Hz 4,000 Hz 10,000 Hz 20,000 Hz
2 ppw 3 25 198 1,586 12,688 198,247 1.6M
6 ppw 84 669 5,353 42,821 342,571 5.4M 42.8G

Table 2.1: Number of mesh points per m3 for a variety of frequencies for an optimal spatial
resolution of ppw = 2 and an oversampled resolution of ppw = 6.
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2 Requirements, assumptions, and methods for interactive applications

Δ𝑥 #locations #IRs storage
0.1715 m 2,173 4.7M 9 GB
0.343 m 567 321,489 613 MB

Table 2.2: Storage requirements for source/receiver pairs in a domain of size 9 m × 7 m,
simulating frequencies up to 1 kHz for simulation time 𝑡max = 0.5 s.

2.3 Data-driven methods to overcome limitations
To overcome the storage requirements intrinsic to the offline approach using numerical meth-
ods, a third category of methods is considered, namely scientific machine learning (SciML).
SciML is an emerging and interdisciplinary field that combines machine learning with well-
established theory from scientific computing and mathematical-physical modeling to tackle
complex scientific problems. More accurate and comprehensive models can be developed by
integrating machine learning methods with domain-specific knowledge about the underlying
physical system. SciML has gained much interest recently (Bianco et al. 2019; Cai et al. 2021;
Cuomo et al. 2022) with a wide range of applications. In this work, we have applied SciML
in the form of deep neural networks to tackle the challenge of handling dynamic scenes with
many moving sources and receivers, intending to remove the extensive storage requirement
for discrete source/receiver locations in traditional methods. By learning a compact and ef-
ficient surrogate model interpolating in a grid-less domain that can execute in real-time, the
limitations of pre-calculating and storing all combinations of source/receiver pairs can be over-
come. A machine learning model learns the full wave field originating from the wave equation
to intrinsically capture the wave phenomena required for an immersive reproduction.

Physics-informed neural networks (PINNs) (Psichogios et al. 1992; Lagaris et al. 1998;
Raissi et al. 2019) are a class of machine learning techniques that combine physics-based
knowledge with neural networks and can be used to solve differential equations. PINNs in-
clude the known physics during training and minimize their residual through the loss function
and differ from traditional “black box” neural networks purely learning from data. It has re-
cently seen a lot of attention, but the applications of PINNs in virtual acoustics are still limited
(Borrel-Jensen et al. 2021; Moseley et al. 2020; Rasht-Behesht et al. 2021; Ma et al. 2023;
Alkhadhr et al. 2021; Lee et al. 2023).

Another family of neural networks is neural operators designed to approximate mathe-
matical operators contrary to functions (Z. Li et al. 2021; Lu et al. 2021; Cao et al. 2023).
DeepONet is a specific neural operator architecture where the underlying theory stems from
the universal operator approximation theorem (Chen et al. 1995), stating that a neural network
(NN) with a single hidden layer of infinite width can approximate any nonlinear continuous
functional or operator. Similar to PINNs, neural operators have seen a lot of attention in
recent years. Still, applications in virtual acoustics are non-existing to the author’s knowl-
edge, although many promising applications in other fields are available, such as in fracture
mechanics (Goswami, Yin, et al. 2022), diesel engine (Kumar et al. 2023), microstructure
evolution (Oommen et al. 2022), bubble dynamics (Lin et al. 2021), bio-mechanics to detect
aortic aneurysm (Goswami, D. S. Li, et al. 2022) and airfoil shape optimization (Shukla et al.
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2023).
Both PINNs and DeepONets can learn a surrogate model that can be executed very effi-

ciently at runtime (in the range of ms) and takes up little storage due to their intrinsic inter-
polation properties in grid-less domains; therefore, these methods have been investigated to
overcome some of the limitations in traditional numerical methods. On the other hand, tradi-
tional numerical methods are useful for producing high-fidelity data for training the surrogate
models.

A recent technique for handling parameter parameterization and model order reduction for
accelerating numerical models is the reduced basis method (RBM) (Hesthaven et al. 2015;
Llopis et al. 2022). Although very efficient, RBM cannot meet the runtime requirements
regarding computation time for real-time virtual acoustics.

2.4 Data generation

2.4.1 Numerical methods - an overview
Since data-driven approaches often demand substantial amounts of data, this research has also
focused on developing more efficient numerical techniques for wave propagation calculations
while ensuring high accuracy in the solutions. Before delving into the details, let us briefly
overview the current state-of-the-art numerical methods.

The most widely employed numerical method in acoustics is the finite-difference time-
domain method (FDTD). This method relies on spatial discretization using a uniform grid
and approximates temporal and spatial derivatives through finite differences. Early applica-
tions of FDTD in acoustics were carried out by (Botteldoorena 1995; Savioja et al. 1994), and
later, (Kowalczyk et al. 2011) introduced frequency-dependent boundary conditions as digi-
tal impedance filters. However, (Borrel-Jensen 2012) demonstrated experimentally that the
frequency-dependent boundary formulation could become unstable when dealing with com-
plex geometries. Higher-order schemes are also available (Van Mourik et al. 2014) but come
with the expense of computation and implementation effort.

To address stability and flexibility concerns, a finite-volume time-domain (FVTD) formula-
tion was developed, which also includes frequency-dependent boundary conditions (Hamilton
2016; Bilbao 2013; Bilbao et al. 2016; Chobeau et al. 2016). FVTD operates on unstructured
meshes, providing greater geometrical flexibility compared to FDTD. One general limitation
of FVTD is its inability to achieve higher-order accuracy, which can restrict its applicability in
certain scenarios. When confined to a uniform grid, the FVTD formulation simplifies to the
FDTD formulation for inner nodes yet retains a stable frequency-dependent boundary treat-
ment. This formulation allows for highly efficient implementation on the GPU (Borrel-Jensen
2012; Webb et al. 2011), as no interdependencies are present when updating pressure values
at spatial grid nodes. However, an inherent challenge when reducing the FVTD operating on
a uniform grid arises from the need for staircasing approximation at the boundaries, leading
to errors in the estimated error decay, even with a finely refined grid (Bilbao 2013).

The finite-element method (FEM) (Craggs 1994; Okuzono et al. 2018) and spectral-element
method (SEM) (Pind et al. 2019) are volumetric discretization techniques, akin to the finite-
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volume method, that offer exceptional geometric flexibility due to their support for unstruc-
tured meshes. These methods partition the domain into smaller subdomains called finite el-
ements, wherein local basis functions are defined. The global solution is then expressed in
terms of the local basis functions, obtained by minimizing the error residual through fitting
weighted coefficients of test functions. The key distinction between FEM and SEM lies in
their choice of basis functions. FEM is typically associated with 1st or 2nd-order polynomi-
als, while SEM employs higher-order polynomial basis functions, which can lead to a faster
error convergence rate of (ℎ𝑁+1), with 𝑁 being the polynomial order. Consequently, the
superior accuracy of higher-order methods enables problem-solving using coarser discretiza-
tion, resulting in more scalable and efficient solutions.

The discontinuous Galerkin finite-element method (DG-FEM) (Hesthaven et al. 2008) ex-
hibits a close relationship with the SEM. Specifically, both methods share commonalities
in defining local elements by applying identical basis functions, local matrix operators, and
nodal sets. Nevertheless, a fundamental distinction arises in the computation of the global so-
lution. In SEM, the solution is ascertained by employing global matrix operators, which are
constructed by summing the local piece-wise basis functions to form global continuous basis
functions. In contrast, DG-FEM adopts a different approach by not enforcing global continu-
ity. Instead, computations take place locally within each element, with interactions between
elements being managed through an interface flux procedure. This makes the method highly
suitable for parallel computing (Melander et al. 2020).

The boundary element method (BEM) (Hargreaves et al. 2019) is founded on discretizing
the Helmholtz equation in the frequency domain. Rather than solving the equation within
the entire domain volume, the problem is transformed into an equivalent integral formulation
restricted to the boundary. This transformation is achieved by representing the solution as a
combination of fundamental solutions to the partial differential equation (PDE). One of the
key advantages of this approach is its dimensionality reduction, as it only requires solving
at the domain boundary. Additionally, BEM allows for straightforward modeling of exterior
domains. However, it is important to note that BEM has its limitations. The system ma-
trices involved in this method are dense (although small) compared to those encountered in
volumetric methods, which tend to be sparse (but large). This density can lead to increased
computational costs, particularly for larger problems. Despite this drawback, BEM remains a
valuable technique for problems with specific geometries and boundary-focused phenomena.

The final method explored in this study is the Fourier (or pseudo-spectral) method (FM)
(Canuto et al. 2006). This technique utilizes trigonometric basis functions and leverages the
Fourier transformation to solve the partial differential equation by computing its derivatives
in the frequency domain. The Fourier method is remarkably efficient, displaying spectral con-
vergence and possessing the advantageous quality of avoiding dispersion errors commonly
associated with traditional numerical methods. Nonetheless, the Fourier method does have
certain limitations. It necessitates simple geometries and periodic or rigid boundary condi-
tions, which restrict its applicability to specific problem domains. To address these limitations,
previous works (Raghuvanshi et al. 2009a; Muñoz et al. 2017) have adopted a domain decom-
position approach applying the Fourier method within rectangular domains while employing
more flexible methods near the boundaries.

Part of this PhD research has been dedicated to investigating similar hybrid approaches,
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which combine the strengths of different methods to tackle challenges associated with specific
geometries and boundary conditions.

2.4.2 Domain decomposition
In the pursuit of developing more efficient numerical methods, domain decomposition tech-
niques have been explored, and we have made the following assumptions in our investigations:

Assumption 3 In the domain of room acoustics, the predominant medium is air.

Assumption 4 The attenuation of sound in the air can be neglected.

Our investigations into domain decomposition techniques aim to improve efficiency by di-
viding the domain into simpler regions for the air partition while employing more complex
partitions near the boundaries that adapt to the domain’s geometry. By simplifying the ge-
ometries and neglecting air and boundary losses, we can utilize efficient (though less flexible)
methods in the air partitions. Meanwhile, the partitions near the boundaries are handled by
less efficient but flexible methods that accurately capture the geometry and boundary mate-
rials. The SEM stands out as a versatile approach that can handle complex geometries and
frequency-independent and dependent boundaries (Pind et al. 2019). Its higher-order conver-
gence properties and the efficient solution of the resulting system of equations due to sparsity
in the matrices make it particularly well-suited for handling partitions near the boundaries.
Our research has focused on two methods for simulating wave propagation in the air domain:

1. The wave-based method (WBM) was introduced in 1998 by (Desmet 1998) and employs
trigonometric basis functions, which promise faster convergence than BEM and FEM,
but with the drawback of being restricted to convex domains.

2. The Fourier method takes advantage of the known analytical solution to the wave equa-
tion in rectangular domains with simple boundary conditions. By using the Fast Fourier
Transform and performing time-stepping in the Fourier domain with a spatial sampling
resolution close to the Nyquist limit, the solution can be calculated very efficiently.
When the signal is properly band-limited and sufficient modes are used, no errors are
introduced. The drawback of this method is its restriction to rectangular domains with
periodic/rigid boundary conditions.

However, coupling these air domain methods with the SEM near the boundaries presents a
challenge. In the existing literature, the coupling of WBM has been accomplished with (lower-
order) FEM using a weighted residual formulation to enforce interface conditions (van Hal
and Hirschberg, 2005). Another approach was proposed by (Raghuvanshi et al. 2009a) by
coupling the FM with the FDTD method using an FD scheme for interface handling, and in
(Muñoz et al. 2017) the coupling was done with DG-FEM through an overlapping interface.
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CHAPTER 3

Fast and accurate numerical
methods for calculating sound

propagation
As discussed in Chapter 1, various numerical methods exist for solving partial differential
equations, and selecting an appropriate method for solving the wave equation depends on
several factors:

Scalability. The convergence rate of a numerical method determines how quickly it approaches
the true solution as the problem size increases. As indicated in Table 2.1, when expand-
ing the frequency range/grid resolution or increasing the domain size, the number of
grid nodes grows rapidly due to the curse of dimensionality. A higher convergence
rate, preferably spectral convergence referring to an exponentially fast decay of errors
(Canuto et al. 2006), is essential for efficient scalability. Methods with faster conver-
gence rates are generally favored over those with linear or quadratic convergence.

Constant factor. The constant factor refers to the coefficient that multiplies the dominant
term in the computational complexity, e.g., (ℎ2) is asymptotically equivalent to a scal-
ing of (𝑐 ⋅ ℎ2) with c the constant factor. Hence, it affects the actual time or memory
consumed for a given problem size and significantly influences the efficiency of a nu-
merical method. For instance, a method may exhibit spectral convergence but possess
a large constant factor, resulting in a longer absolute computation time compared to a
method with a slower convergence rate but a small, constant factor.

Parallelizability. Enhancing scalability involves parallelizing numerical methods to leverage
multiple computations concurrently. Properties that facilitate parallelization include
minimal data dependencies, allowing independent tasks to execute concurrently; lim-
ited communication overhead between parallel processes to prevent bottlenecks; and
efficient data structures that scale well with problem size and parallelism. Efficient par-
allelization further contributes to the method’s ability to effectively handle larger and
more complex problems.

The numerical method’s flexibility is also a crucial aspect to consider, particularly concerning
the following:

Geometry. The method’s ability to precisely capture the boundary shape is crucial in ensur-
ing overall simulation accuracy for realistic domains. Some methods utilize staircase

13
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approximations, while others handle non-uniform meshes, which can significantly im-
pact the fidelity of the results.

Boundary conditions. Accurately modeling the boundary conditions to reflect the materials
of the domain is essential. A robust numerical framework should exhibit the flexibility
to handle a wide range of material types to accommodate various real-world scenarios.

Directionality. Auralization for interactive applications requires spatialization of the sound
field to create an immersive experience. Many sound sources emit sound in specific di-
rectionality patterns, and receivers should be modeled to account for the characteristics
of the human auditory system, i.e., modeled for two ears. This directional information
is vital in achieving a more realistic and engaging auditory experience.

Certain crucial aspects should be considered when developing and evaluating numerical
methods for accurate and efficient sound simulations. Previous research has demonstrated
that both the SEM and DG-FEM possess several desirable properties (Hesthaven et al. 2008;
Canuto et al. 2006), including:

• Spectral convergence,

• Sparse system matrices, enabling efficient solvers,

• Geometrical flexibility,

• Versatility in handling complex boundary conditions,

• Ability to accommodate arbitrary initial conditions/source functions, and

• Efficient parallelization for the DG-FEM scheme.

These advantageous properties make the SEM and DG-FEM well-suited for room acoustics
simulations. However, these methods can still be computationally demanding despite pos-
sessing these attributes, as illustrated in Figure 2.1. To improve the efficiency, we have imple-
mented domain decomposition techniques, dividing the domain into partitions encompassing
the air, which can take the form of rectangular or convex shapes, along with arbitrary partitions
near the boundaries. This approach takes into account the geometrical shape and boundary
conditions of the domain. Specifically, the partitions near the boundaries apply the SEM to
leverage its flexibility, while the partitions consisting of air utilize more efficient, albeit less
flexible, methods. This partitioning strategy enables us to balance accuracy and computa-
tional efficiency in our sound simulations. In the context of air domains, our investigation has
focused on two specific methods:

• WBM: This method employs trigonometric basis functions and is limited to convex
domains.

• Fourier method: This approach exploits the known analytical solution to the wave
equation and is limited to rectangular domains. Our primary interest lies in its coupling
with SEM.
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In the following sections, we will explain these methods and present our rationale for discon-
tinuing further efforts in coupling the WBM with SEM. Instead, we will elaborate on why
the FM has shown more promise for successful coupling with SEM, making it the preferred
choice for our investigations.

3.1 The wave-based method
The WBM (Desmet 1998) is designed for solving steady-state problems described by the
Helmholtz equation (a frequency domain version of the wave equation (1.1))

∇2𝑝(𝐱) + 𝑘2𝑝(𝐱) = 𝑓 (𝐱), 𝐱 ∈ Ω, (3.1)

where ∇2 is the Laplacian, 𝑝(𝐱) is the pressure field variable of the Helmholtz equation, 𝑘 =
𝜔∕𝑐 is the wave number, 𝑐 the speed of sound, 𝑓 (𝐱) is the forcing function and Ω is the
problem domain.

The procedure for solving the Helmholtz equation consists of four steps 1) partition the
problem into convex subdomains, 2) selection of a suitable set of wave functions for each
subdomain, 3) construct and solve the system of matrices yielding the wave function contri-
bution factors, 4) postprocessing of the dynamic variables. The formulation of the residuals,
the system of equations, and the postprocessing will not be explained here but is summarized
in Report B, and more details can be found in (Van Genechten et al. 2012a; Pluymers 2006).
A useful overview paper can be found in (Deckers et al. 2014). In the next section, we will
explain the specific choices of basis functions and discuss the results for our convergence
analysis when using a point source in a closed 2D domain.

3.1.1 Trigonometric wave functions
The steady-state fields 𝑝(𝐱) in each subdomain are approximated by a solution expansion
𝑝̂𝑤(𝐱) in terms of the 𝑛𝑤 number of wave functions 𝜙𝑤 for a 𝛼 partition

𝑝(𝛼)(𝐱) ≃ 𝑝̂(𝛼)(𝐱) =
𝑛(𝛼)𝑤∑
𝑤=1

𝑝(𝛼)𝑤 𝜙𝑤(𝐱)(𝛼) + 𝑝̂(𝛼)𝑞 (𝐱) = 𝚽(𝛼)(𝐱)𝐩(𝛼)𝑤 + 𝑝̂(𝛼)𝑞 (𝐱), (3.2)

where 𝑝̂(𝛼)𝑞 (𝐱) represents a particular solution resulting from the forcing term in the Helmholtz
equation, and 𝐱 are the spatial coordinates. Each wave function 𝜙(𝐱) exactly satisfies the
homogeneous part of the Helmholtz equation. There are two choices of wave functions for
2D bounded domains, the 𝑟- and 𝑠-set

𝑛(𝛼)𝑤∑
𝑤=1

𝑝(𝛼)𝑤 𝜙(𝛼)
𝑤 (𝐱) =

𝑛(𝛼)𝑤𝑟∑
𝑤𝑟=1

𝑝(𝛼)𝑤𝑟𝜙
(𝛼)
𝑤𝑟 (𝐱) +

𝑛(𝛼)𝑤𝑠∑
𝑤𝑠=1

𝑝(𝛼)𝑤𝑠𝜙
(𝛼)
𝑤𝑠 (𝐱). (3.3)
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The wave functions are defined as

𝜙(𝛼)
𝑤 (𝐱) =

⎧⎪⎨⎪⎩
𝜙(𝛼)
𝑤𝑟 (𝑥, 𝑦) = cos(𝑘(𝛼)𝑥𝑤𝑟𝑥)𝑒

−𝑗𝑘(𝛼)𝑦𝑤𝑟𝑦,

𝜙(𝛼)
𝑤𝑠 (𝑥, 𝑦) = 𝑒−𝑗𝑘

(𝛼)
𝑥𝑤𝑠𝑥 cos(𝑘(𝛼)𝑦𝑤𝑠𝑦).

(3.4)

The only requirement for Equation 3.4 to be an exact solution to the Helmholtz equation is
that the wave numbers satisfy

(𝑘(𝛼)𝑥𝑤𝑟 )
2 + (𝑘(𝛼)𝑦𝑤𝑟 )

2 = (𝑘(𝛼)𝑥𝑤𝑠 )
2 + (𝑘(𝛼)𝑦𝑤𝑠 )

2 = 𝑘2.

There are infinitely many solutions for the above relation, but the following have been pro-
posed

(𝑘(𝛼)𝑥𝑤𝑟 , 𝑘
(𝛼)
𝑦𝑤𝑟 ) =

(
𝑤(𝛼)

1

𝐿(𝛼)
𝑥

,±

√
𝑘2 −

(
𝑘(𝛼)𝑥𝑤𝑟

)2
)
,

(𝑘(𝛼)𝑥𝑤𝑠 , 𝑘
(𝛼)
𝑦𝑤𝑠 ) =

(
±

√
𝑘2 −

(
𝑘(𝛼)𝑦𝑤𝑠

)2
,
𝑤(𝛼)

2

𝐿(𝛼)
𝑦

,

)
.

𝐿(𝛼)
𝑥 and 𝐿(𝛼)

𝑦 are the dimensions of the smallest box surrounding the subdomain, 𝑘 = 𝜔∕𝑐, 𝜔
being the angular frequency and 𝑤1 = 𝑤2 = 0, 1,…. This choice of wave functions leads to
standing and evanescent waves.

3.1.2 Convergence analysis
The convergence rate is examined for the steady-state solution at 𝑓 = 300Hz with point source
location 𝑠𝑥𝑦 = (1.2, 1.2) m in a 2 m×2 m rectangular domain. In Figure 3.1, the convergence

Figure 3.1: WBM convergence as a func-
tion of wave functions𝑁𝑤 = 𝑁𝑤𝑟+𝑁𝑤𝑠 =
8, 28, 48,… , 608 in a 2 m × m domain at
frequency 𝑓 = 300 Hz. When excluding
points on the boundary, the convergence is(Δ𝑥4) corresponding to the convergence of
the SEM with third-order polynomial basis
functions.
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rate is summarized. We exclude points within a radius of 𝑟 = 0.4 m from the singularity
in the source point. The reference solution is constructed using the SEM on a very fine grid.
WBM has a 4th-order convergence when calculating the𝐿2 error norm disregarding boundary
collocation points, which corresponds to the convergence of an SEM with third-order poly-
nomials as basis functions. Larger errors and slower 2nd-order convergence can be observed
when including boundaries. Modeling pressure fields exited by point sources might be more
challenging due to the abrupt injection, leading to highly oscillating waves. This requires
more wave functions to capture the physics. A similar issue with degraded convergence has
been observed when piston radiation from a boundary happens, resulting in discontinuous
boundary conditions (Van Genechten et al. 2012b). The constant factor solving the smaller
dense matrix systems resulting from the WBM compared to the larger sparse matrix systems
resulting from the SEM/DG-FEM has not been investigated. From the above observations, it
was decided to abandon further work in this direction since SEM and DG-FEM can obtain
higher convergence rates and, therefore, might be a more efficient and scalable choice.

3.2 The hybrid Fourier/spectral element method
Domain decomposition is a powerful technique employed in solving partial differential equa-
tions (PDEs) by dividing the domain into multiple partitions that can be solved independently
or in parallel. The solutions obtained in each partition are then combined at the interfaces by
enforcing constraints to derive the overall solution to the PDE. One example of this approach
is the hybrid FE-WBM, where domain decomposition is utilized to achieve the desired solu-
tion. The DG-FEM can also be perceived as a domain decomposition method, where fluxes
constrain the solutions between the finite-element partitions. In this particular work, we have
not adopted this approach, and we will explain the reasoning behind our method next.

The central idea in our work is to utilize the Fourier method for simulating the majority
of the domain, which primarily consists of air, and then couple the Fourier method with the
SEM in partitions near the boundaries. This method exhibits exceptional efficiency, with a
time complexity of (𝑁 log𝑁) for calculating the derivatives using the Fast Fourier Trans-
form (FFT) for 𝑁 degrees of freedom. Moreover, the method allows us to sample the spatial
resolution at the Nyquist limit without introducing dispersion errors. However, this effective-
ness comes with a limitation, as the method is confined to simple domains with periodic or
rigid boundary conditions. To exploit the favorable features, the pressure fields are calculated
independently for a single time step in each partition running either the Fourier method or
SEM. This approach results in reflected wavefields at the interface, necessitating the imple-
mentation of interface handling to compensate for the reflected pressures in the partitions.

It is essential to note that this approach differs significantly from traditional domain de-
composition methods. The unique characteristics of our domain decomposition technique
introduce new challenges, particularly in handling interfaces, but they also offer promising
opportunities for more efficient simulations.

The above-mentioned approach was first introduced in (Raghuvanshi et al. 2009b) and
implemented for efficiency on the GPU in (Morales et al. 2015). The method is called adap-
tive rectangular decomposition (ARD) and consists of coupling the Fourier method with the
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FDTD using 2nd and 6th order finite-differences for the interface handling. The research
claims interface errors of −40 dB and 18×-24× speedups on the CPU using ARD compared
to using FDTD in the full domain. The method is currently being used in Project Acous-
tics by Microsoft (Microsoft 2023). A related approach was taken by (Muñoz et al. 2017),
coupling the Fourier method with the DG-FEM using an overlapping domain decomposition
method for interface handling. Overlapping domains are imposed due to the requirements of
including a Gaussian window function to impose periodicity on the Fourier method for inter-
face handling. The method claims low errors and stable long-time simulations; however, no
information is available concerning the method’s efficiency.

We have investigated methods to couple the Fourier method with the SEM using finite-
difference schemes inspired by ARD.

3.2.1 Paper D: Interface handling
Additional details about spatiotemporal interpolation can be found in Report A (excluded
from Paper D due to length limitations). The main contribution of this work is the coupling
between FM and SEM; in this presentation, we will further discuss the challenges.

This method aims to accurately and efficiently solve the wave equation from Equation 1.1.
We can formulate a unified framework for communicating pressures between partitions run-
ning any method following the same approach as (Raghuvanshi et al. 2009b). The boundary
condition is imposed at the pressure node 𝑁 . Without lack of generality, assume that two
independent second-order (2,2) FDTD update schemes are running in each partition and de-
note the pressures in partition 1 as 𝑝1,𝑖 and partition 2 as 𝑝2,𝑖 with subscripts denoting the
partition and corresponding node index, respectively. Δ𝑥 and Δ𝑡 are the spatial and temporal
resolutions, respectively, and the superscript 𝑝(𝑛) denotes the discretized time steps. Then, the
interface communication can be handled as follows:

1. Calculate the pressures in each domain as completely independent partitions with Neu-
mann boundary condition at the interface

𝑝(𝑛+1)1,𝑁 ←
𝑐2Δ𝑡21
Δ𝑥21

(
2𝑝(𝑛)1,𝑁−1 − 2𝑝(𝑛)1,𝑁

)
+ 2𝑝(𝑛)1,𝑁 − 𝑝(𝑛−1)1,𝑁 + 𝐹 (𝑛)

1,𝑁 ,

𝑝(𝑛+1)2,1 ←
𝑐2Δ𝑡22
Δ𝑥22

(
−2𝑝(𝑛)2,1 + 2𝑝(𝑛)2,2

)
+ 2𝑝(𝑛)2,1 − 𝑝

(𝑛−1)
2,1 + 𝐹 (𝑛)

2,1 .

(3.5)

2. Remove the residual part at time 𝑛 corresponding to the reflected pressures

𝑝(𝑛+1)1,𝑁 ← 𝑝(𝑛+1)1,𝑁 −
𝑐2Δ𝑡21
Δ𝑥21

(
𝑝(𝑛)1,𝑁−1

)
, 𝑝(𝑛+1)2,1 ← 𝑝(𝑛+1)2,1 −

𝑐2Δ𝑡22
Δ𝑥22

(
𝑝(𝑛)2,2

)
. (3.6)
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3.2 The hybrid Fourier/spectral element method

3. Transfer the removed residual part at time 𝑛 to the neighboring partition(s)

𝑝(𝑛+1)1,𝑁 ← 𝑝(𝑛+1)1,𝑁 +
𝑐2Δ𝑡21
Δ𝑥21

⋅
(
𝑝(𝑛)2,2

)
, 𝑝(𝑛+1)2,1 ← 𝑝(𝑛+1)2,1 +

𝑐2Δ𝑡22
Δ𝑥22

(
𝑝(𝑛)1,𝑁−1

)
. (3.7)

In Figure 3.2, the intermediate pressure field is depicted after the Neumann boundary con-
dition has been imposed at the interface after a time step Δ𝑡 before interface handling. This
is a non-physical state solely due to the procedure of calculating the pressure fields separately
in the partition and afterward compensating for the reflected pressures. This introduces non-
smooth second derivatives known as ‘shocks’ in the literature, and it is well-known to cause
challenges for SEM and DG-FEM. If shocks are not handled accordingly, the scheme intro-
duces large errors and could get unstable (although not observed here). An investigation has
been made by comparing the Laplacian term in the wave equation for the SEM and FDTD
methods

(SEM) 𝐏(𝑛+1) = 2𝐏(𝑛) − 𝐏(𝑛−1)
SEM Laplacian

−𝑐2Δ𝑡2−1 (𝐏(𝑛)) + Δ𝑡2𝐅(𝑛), (3.8)

(FDTD) 𝐏(𝑛+1) = 2𝐏(𝑛) − 𝐏(𝑛−1)

FDTD Laplacian

+𝑐
2Δ𝑡2

Δ𝑥2
𝐾𝐏(𝑛) + Δ𝑡2𝐅(𝑛), (3.9)

where  is the mass matrix and  is the stiffness matrix (Hesthaven et al. 2008). The Lapla-
cians annotated with boxes above are plotted in Figure 3.3 for the second-order interface
scheme applied to the second-order FDTD method and the first and second-order SEM. The
two methods run simultaneously in the entire domain (no coupling) with the residual sub-
tracted corresponding to applying only Equation 3.5 and Equation 3.6, and leave out Equa-
tion 3.7. This corresponds to transforming Neumann to Dirichlet boundary conditions with

n-1

n

n+1

Neumann 
boundary

(a) Calculate time step 𝑛+ 1 from time steps 𝑛
and 𝑛 − 1 with homogenous Neumann bound-
ary conditions at interface.

n-1

n

n+1

Collocation points 
after interface 

handling

(b) Adjust pressures near the interface at time
𝑛 + 1.

Figure 3.2: Illustration of the interface handling with the same spatial and temporal resolu-
tions in both partitions.
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Figure 3.3: Accuracy of the Laplacians for the FDTD scheme and SEM when the interface
residual is subtracted.
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Figure 3.4: Domain decomposition coupling FM with SEM by introducing a first-order SEM
layer to stabilize the scheme.

endpoints 𝑝(−Δ𝑥, 𝑡) = 𝑝(𝑙 + Δ𝑥, 𝑡) = 0 outside the domain. No ‘interface’ errors are intro-
duced in the FDTD simulation since the interface scheme, and the simulation scheme have
the same order. We note that much bigger errors are introduced for the higher-order SEM
due to the shock introduced when enforcing Neumann boundaries at each time step, which
can be observed both in the pressure plot and the plot of the Laplacians at 𝑥 = 0. A simple
remedy was to add an SEM layer of first-order polynomials near the interface, as illustrated
in Figure Figure 3.4, where the number of nodes in the layer should correspond to half the
interface scheme order. However, this comes with the disadvantage of reducing the overall
convergence to the polynomial order at the interface, acting as a bottleneck for the whole
solution. In (Hesthaven et al. 2008) [Section 5.6], filtering methods have been proposed to
reduce the errors in the presence of shocks, and it should be investigated if this method can
be applied to reduce the approximation errors for higher-order SEMs.
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3.3 Contributions
In Paper D and the complementary material in Report A, we examine the domain decompo-
sition method suggested in (Raghuvanshi et al. 2009b) in a new setting, where the Fourier
method is coupled with the SEM.

• An interface coupling between partitions running the Fourier method and the SEM is
proposed. The interface coupling is based on the FDTD scheme defined on a uniform
grid similar to (Raghuvanshi et al. 2009b) with the key difference of coupling the
Fourier method with SEM instead of coupling the Fourier method with FDTD.

• The proposed Fourier-SEM coupling alleviates the need for oversampling in the major-
ity of the domain corresponding to air and, moreover, exploits the Fast Fourier Trans-
form for efficiently solving the wave equation in the Fourier domain. Overall, a 18×
speedup was reported in a 1D domain where the Fourier method was applied in 95%
of the domain corresponding to the air partition while achieving relative errors below
10% with interface errors around −36 dB.

• An interpolation procedure ensuring small interface errors was carefully explained and
proposed. To exploit the efficiency of the Fourier method capable of operating close
to the spatial Nyquist limit, interpolation in the temporal and spatial dimensions is
required and has not been described in the literature. Report A describes the interpo-
lation in greater details.

• A remedy for handling shocks due to the unphysical coupling was proposed for im-
proving the accuracy of the approximation of the Laplacian in the SEM. The remedy
was to add a layer of 1st order polynomial basis functions between the SEM partition
and the interface, drastically improving the accuracy. However, this affects the global
error convergence of the SEM, effectively reducing the convergence to 1st order.
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CHAPTER 4

Handling dynamic scenes with
moving sources and receivers

Addressing interactive dynamic scenes with moving sources and receivers poses a challenging
problem for traditional numerical methods. Therefore, we have focused on building surrogate
models that should be capable in real time to predict the IR for any source/receiver pair in a
grid-less domain. Deep neural networks have emerged as a powerful tool for solving partial
differential equations by leveraging their ability to learn complex patterns. The fundamental
concept involves approximating the solution of the equation (or the operator) by training the
input/output relation through the minimization of a loss function. The network is trained
using pairs of input data, including spatial and temporal information and the corresponding
solution data. Its objective is to generalize this learning process, enabling the prediction of
solutions for unseen inputs with high accuracy. Moreover, deep neural networks can provide
solutions much more efficiently than traditional methods once trained by exploiting optimized
hardware, such as GPUs.

In this work, we have focused on two main techniques: physics-informed neural networks
(PINNs) and neural operators using the DeepONet framework. PINNs were introduced in
2017 and later published in 2019 (Raissi et al. 2019). However, the idea of constrained neural
networks can be traced back to earlier works such as (Psichogios et al. 1992) and (Lagaris et al.
1998). One of the first instances that can be considered a PINN was presented in (Dissanayake
et al. 1994), where a quasi-Newtonian approach was used, and gradients were evaluated using
finite-differences. It is important to note that while PINNs are a notable framework for solving
PDEs with neural networks, they are not the only one, and an extensive review of various
approaches can be found in (Cuomo et al. 2022). The DeepONet framework (Lu et al. 2021)
is a specific realization of neural operators. Unlike function regression, operator regression
aims to learn the mapping from one function space (inputs) to another function space (output),
where the learned operator can be evaluated at arbitrary (continuous) locations.

In the following, we will introduce general concepts related to deep neural networks and
dive into the methods in more detail.

4.1 Deep neural networks
Deep learning is a subfield of machine learning that revolves around artificial neural net-
works with multiple layers. Its diverse applications include image classification, computer
vision, speech recognition, language translation, autonomous driving, bioinformatics, and
more. More recently, deep learning has found its way into scientific domains, demonstrat-
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ing its utility in earthquake detection, fluid mechanics, turbulent modeling, and more. The
widespread adoption of deep learning is facilitated by accessible software packages such as
TensorFlow, PyTorch, and Jax, as well as advancements in hardware technology, such as
GPUs and TPUs, which significantly enhance its computational efficiency.

4.1.1 A short introduction
The Feed-Forward Neural Network (FNN) (Goodfellow et al. 2016) is the simplest neural
network and is used as building blocks for more advanced networks. An FNN is depicted in
Figure 4.1 and consists of an input layer 𝐱, 𝐿 hidden layers, and an output layer and maps an
input 𝐱 to an output 𝐲 as

𝐲 = (𝑔1◦… ◦𝑔𝐿)(𝐱), where (4.1a)
𝑔𝑖(𝐱) = 𝜎𝑖(𝐖𝑖𝐱 + 𝐛𝑖), (4.1b)

and 𝜎𝑖(𝐱) is a non-linear activation function, except for the last layer applying the identity
mapping 𝜎𝐿(𝐱) = 𝐱. A multilayer perceptron (MLP) is a special case of an FNN, where every
layer is fully connected, and the number of nodes in each layer is the same.

The weights 𝐖𝑖 and biases 𝐛𝑖 are the parameters to learn. Hence, each layer receives
information from the previous layer and passes it forward to the next layer after a combination
of scaling determines the weights 𝑊 , shifting determined from the bias 𝑏, and a non-linear
mapping by the activation function 𝜎. The weights 𝐖𝐢 and biases 𝐛𝐢, ∀𝑖 = {1,… , 𝐿} are
identified through a minimization problem

argmin
𝐖,𝐛

(𝐖,𝐛) = ‖𝑓 (𝐱∗) − 𝑓 (𝐱∗)‖ = ‖𝑓 (𝐱∗) − (𝐱∗;𝐖,𝐛)‖ (4.2)

where 𝐱∗ are the discrete collocation points and ‖ ⋅ ‖ is the mean squared norm used in this
work.

Hidden layersInput layer Output layer

 

 

bias bias bias bias

......

 

 

 

 

 

...

 

 

 

...

Figure 4.1: Feed-Forward Neural Network architecture with 𝑛 inputs, 𝐿 hidden layers with
𝑘 neurons and one output layer. The weights and connections highlighted in red contribute to
the output of the highlighted neuron in the first hidden layer, i.e., 𝑎(1)1 =

∑𝑛
𝑖=1𝑊

(1)
1,𝑖 𝑥𝑖 + 𝑏

(1)
1

and similar for all neurons in the first hidden layers written in matrix form 𝐚(1) = 𝐖(1)𝐱+𝐛(1).
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Typical, the loss is minimized through gradient descent by taking a step 𝛾𝑛 in the opposite
direction of the gradient as

𝐱𝐧+𝟏 = 𝐱𝐧 − 𝛾𝑛Δ(𝐱𝑛), (4.3)

where Δ(⋅) is the differential operator and 𝛾𝑛 is the step size. ADAM (Goodfellow et al. 2016)
was used in this work, which includes a variate learning rate and momentum, helping the
optimizer escape local minima. The loss function is minimized in terms of the network pa-
rameters and therefore is very high-dimensional. To efficiently calculate the gradient, the
back-propagation algorithm (Rumelhart et al. 1986) is used to dynamically calculate the gra-
dient of each of the network weights and biases

𝜕
𝜕𝑊 𝑙

𝑗𝑘

, 𝜕
𝜕𝑏𝑙𝑗

, (4.4)

by applying the chain rule. The subscript 𝑗𝑘 denotes the weight for the connection from node
𝑘 in layer 𝑙 − 1 to node 𝑗 in layer 𝑙. An intuitive explanation can be found in (Nielsen 2017).

Typical activation functions 𝜎 are the ReLu 𝑥̂ ↦ 𝑥̂+, sigmoid 𝑥̂ ↦ 1∕(1 + 𝑒𝑥̂) and tanh
𝑥̂↦ (𝑒𝑥̂ − 𝑒−̂𝑥)∕(𝑒𝑥̂ + 𝑒−̂𝑥) functions, but in this work the sine function greatly outperformed
the other choice as will be discussed in subsection 4.1.3.

4.1.2 Overcoming the curse of dimensionality
The curse of dimensionality refers to the exponential increase in data size and computational
complexity when the number of dimensions in the datasets grows. Numerical methods are
subject to the curse of dimensionality because their computational complexity increases expo-
nentially with the number of dimensions, as also discussed in Chapter 1. As an example, let
us represent a function 𝑝(𝑥) approximated by polynomial basis functions in terms of a series
expansion 𝑝̂(𝑥) in 1D as

𝑝̂(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 +… , (4.5)

where 𝑎𝑖 are the coefficients to be determined. Now, representing a function 𝑝(𝑥, 𝑦) in 2D,
we would require the basis functions to span a 2D polynomial space ℝ × ℝ of order 𝑃 as
(Hesthaven et al. 2008)

𝑃 = span{𝑥𝛼𝑦𝛽}, 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 ≤ 𝑃 . (4.6)

The necessary terms in the series expansion can be deduced from Pascal’s triangle of order P
corresponding to the binomial expansion (𝑥 + 𝑦)𝑃

𝑝̂(𝑥, 𝑦) =

𝑎0
+𝑎1𝑥 +𝑎2𝑦

+𝑎3𝑥2 +𝑎4𝑥𝑦 +𝑎5𝑦2
+𝑎6𝑥3 +𝑎7𝑥2𝑦 +𝑎8𝑥𝑦2 +𝑎9𝑦3

… … … … …
(4.7)
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The series expansion in 3D written in general form for basis functions 𝜙 is

𝑝̂(𝑥, 𝑦, 𝑧) =
𝑃∑
𝑖

𝑃∑
𝑗

𝑃∑
𝑘
𝑎𝑖,𝑗,𝑘𝜙𝑖(𝑥)𝜙𝑗(𝑦)𝜙𝑘(𝑧), (4.8)

where𝜙 could be, for example, Legendre or Lagrange polynomials typical for SEM or trigono-
metric functions typical for Fourier series. Also, Taylor expansions or Monte Carlo sampling
suffer from the same limitations.

Techniques exist to overcome the curse of dimensionality, such as Principal Component
Analysis, Proper Orthogonal Decomposition, and Reduced Basis Methods (Llopis et al. 2022),
aiming to reduce the complexity of high-dimensional systems while preserving their essential
behavior. Of particular interest for our work are deep neural networks. Deep neural networks
are inherently capable of learning hierarchical representations from high-dimensional data.
This is possible due to the multiple layers of non-linear transformation enabling the network
to learn features and patterns, effectively reducing the problem’s dimensionality and mitigat-
ing the curse of dimensionality. A theoretical investigation for DeepONets can be found in
(Lanthaler et al. 2022) but is out of scope for this thesis work. This is an important property
essential for the scalability of neural networks, including DeepONets.

4.1.3 Spectral bias
It is well-known that deep neural networks first learn the lower frequency modes of the data
and suffer from learning the higher frequency modes. This phenomenon is known as spectral
bias (Rahaman et al. 2018; Basri et al. 2020) and can be observed in Figure 4.2, where the 1D
wave equation is learned using tanh activation functions lacking the high-frequency content
of the signal. This problem can be addressed by passing the temporal and spatial coordinates
through a Fourier feature mapping that enables a deep FNN to learn the high-frequency modes
of the data shown in Figure 4.2(b). The Fourier mapping can be written

𝛾(𝐱) =
(

cos(2𝜋𝐁𝐱)
sin(2𝜋𝐁𝐱)

)
for 𝐁 ∈ ℝ𝑚×𝑑 , (4.9)

where 𝑚 is the number of frequencies and 𝐁 is the Fourier mapping matrix. The Fourier
mapping matrix can be defined in various ways, e.g., as a Gaussian mapping or a positional
encoding mapping as a diagonal matrix, as investigated in Paper C. Using the sine activation
function in all layers is depicted in Figure 4.2(c) and shows even better results compared to
applying feature expansion techniques. The predictions were all made using DeepONet with
the standard MLP network architecture and show RMSE1 errors of 0.12 Pa, 0.003 Pa, and
0.001 Pa for a), b), and c), respectively. In (Benbarka et al. 2022) (section 3.1), it has been
shown that passing the temporal and spatial coordinates through a Fourier feature mapping is
equivalent to a Fourier series and we will briefly summarize the findings in the following. A

1RMSE =

√∑𝑁
𝑛=1(𝑝ref𝑖−𝑝pred𝑖 )

2

𝑁
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(a) (b)

(c)

Figure 4.2: Examples showing the spectral bias when learning a 1D wave propagation prob-
lem for different activation functions and the impact using Fourier feature expansion tech-
niques. (a) tanh activation function (RMSE = 0.12 Pa), (b) Fourier feature mapping with the
tanh activation function (RMSE = 0.003 Pa), and (c) sine activation function, no Fourier
feature mapping (RMSE = 0.001 Pa). (b) and (c) clearly outperforms (a), struggling to cap-
ture the high-frequency content.

Fourier series is a weighted sum of sines and cosines with incrementally increasing frequen-
cies that can reconstruct any periodic function using enough frequencies and can be written
(here assuming the input is periodic over the bound of the input)

𝑓 (𝐱) =
∑

𝐧∈ℕ×ℤ𝑑−1
𝑎𝐧 cos(2𝜋𝐧 ⋅ 𝐱) + 𝑏𝐧 sin(2𝜋𝐧 ⋅ 𝐱), (4.10)

where 𝑎𝐧 and 𝑏𝐧 are the Fourier coefficients. Writing the above equation in vector form gives

𝑓 (𝐱) =
(
(𝑎𝐧)𝐧∈𝐁, (𝑏𝐧)𝐧∈𝐁

)
⋅
(

cos(2𝜋𝐁′𝐱)
sin(2𝜋𝐁′𝐱)

)
. (4.11)

If we let the activation function be the identity function, we get

𝑦(𝐱;𝐖,𝐛) = 𝐖𝛾 + 𝐛, (4.12)

and comparing with Equation 4.11 we find that
(
(𝑎𝐧)𝐧∈𝐁, (𝑏𝐧)𝐧∈𝐁

)
is equivalent to 𝐖, 𝐛 = 0,

and 𝐁′ = ℕ × ℤ𝑑−1 takes all possible combinations of 𝐧 as defined in Equation 4.10.
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A comparable remedy to address the spectral bias is to apply the sine activation function,
showing superior performance for wave propagation problems compared to the traditionally
used activation functions such as tanh and relu depicted in Figure 4.2(c). (Benbarka et al.
2022) also showed that a Fourier-mapped perception is structurally similar to applying sine
activation function in the first layer.

Proper initialization of the weights in a deep neural network is important to ensure the
variance of the activations remains the same across different layers. Using the standard ini-
tializations (Glorot et al. 2010; He et al. 2015) for the sine activation is not optimal. Instead,
a strategy was proposed in (Sitzmann et al. 2020) (section 3.2) with the key idea of preserv-
ing the distribution of activations through the network, not dependent on the number of layers.
We have initialized the weights of the networks as

𝑤𝑖 ∼ 
(
−
√
6∕𝑛
𝑘

,

√
6∕𝑛
𝑘

)
, (4.13)

where 𝑛 denotes the number of input neurons to the 𝑖th neuron. The first layer is initialized
with an angular frequency 𝑤0 such that the sine functions sin(𝑤0 ⋅ 𝐖𝐱 + 𝐛) spans multiple
periods.

4.2 Physics-informed neural networks
PINNs (Raissi et al. 2019) can solve differential equations in their general form

 (𝑢(𝜉); 𝛾) = 𝑓 (𝜉), 𝜉 ∈ Ω, (4.14a)
(𝑢(𝜉)) = 𝑔(𝜉), 𝜉 ∈ 𝜕Ω, (4.14b)

defined on the domain Ω ∈ 𝑁 , 𝑁 ∈ ℤ, where the location is denoted by 𝜉 = [𝑥1, 𝑥2,… , 𝑡]
with 𝑥 and 𝑡 denoting spatial and temporal dimensions, respectively, 𝑢 represents the unknown
field to be solved for, 𝛾 are the parameters of the physics in the differential equation, 𝑓 is a forc-
ing function,  is a (non-linear) differential operator,  is an operator denoting initial/bound-
ary conditions, 𝑔 is the initial/boundary function. A deep neural network  (𝜉; Θ) must
learn the approximation 𝑢̂(𝜉) ≈ 𝑢(𝜉) by finding the optimal network parameters Θ by mini-
mizing a loss  typically through gradient descent. In PINNs, the loss function is a weighted
sum of the differential equation and the coupled initial/boundary conditions

 = 𝜆 (Θ) + 𝜆(Θ) + 𝜆datadata(Θ), (4.15)

and the optimization problem can be stated as

Θ∗ = argmin
Θ

(). (4.16)

Note that arbitrarily many losses can be added, and the data loss could be absent for purely
non-data-driven approaches. An excellent outlook of PINNs is given in (Cuomo et al. 2022).
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4.2.1 Universal function approximation theorem
Typical for most deep learning techniques is that they are based on the assumption of function
approximations of neural networks (Hornik et al. 1989). The Universal Approximation Theo-
rem states that a feedforward neural network with a single hidden layer containing a sufficient
number of neurons or units can approximate any continuous function to an arbitrary degree
of accuracy within a compact input domain.

Formally, let 𝑓 ∶ ℝ𝑛 → ℝ𝑚 be the arbitrary function to be approximated by a network,
then the Approximation Theorem states that for any 𝜖 > 0 and any continuous function 𝑓 ,
there exists a neural network 𝐹 with a single hidden layer 𝐹 (𝐱;𝐖,𝐛) = 𝜎(𝐖𝐱 + 𝐛) such that

|𝑓 (𝐱) − 𝐹 (𝐱)| < 𝜖, (4.17)

where 𝐖 ∈ ℝ𝑚×ℝ𝑛 and 𝐛 ∈ ℝ𝑚. The Universal Approximation Theorem provides a theoreti-
cal foundation that the network with arbitrarily many neurons can form complex combinations
of simple functions to approximate any continuous function bounded by an arbitrary small 𝜖.

The theorem does not provide any number of neurons or the specifics of the network archi-
tecture to achieve a given accuracy. The Universal Approximation Theorem only guarantees a
small approximation errors for a sufficiently large network but does not consider optimization
or generalization errors. The three main categories of errors are listed below

Approximation errors

Bias error (or underfitting) occurs when the network fails to capture the underlying
pattern and complexity of the problem to learn. The consequences are high train-
ing errors and poor generalization of unseen data. Bias errors could indicate that
the network’s capacity or complexity is inadequate for the problem but could also
be caused by inadequate hyperparameters or issues related to the optimizer.

Irreducible error represents noise or randomness in the data that cannot be reduced in
the model and can be attributed to measurement data or some inherent variability
in the data. The irreducible error could be handled by adjusting the loss metric or
adding regularizer terms.

Optimization errors arises when the model is unable to converge to an optimal solution
caused by bad hyperparameter tuning (e.g., inadequate learning rate), vanishing or ex-
ploding gradient (e.g., bad parameter initialization), or getting stuck in local minima
(e.g., when using optimizers with fixed learning rates). Proper hyperparameter tuning
and choosing more sophisticated optimizers could mitigate these issues.

Generalization errors

Variance error (or overfitting) occurs when the network becomes too sensible to the
training data and fails to generalize to unseen data. Instead of learning the un-
derlying patterns, it memorizes the data leading to low training errors but high
validation/test errors. Variance errors typically indicate that the network is too
complicated or the training data is too sparse.
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4 Handling dynamic scenes with moving sources and receivers

Hence, setting up a deep neural network that approximates and generalizes well to the problem
of interest requires investigating and mitigating the three categories of errors.

4.2.2 Paper A: Solving the wave equation with PINNs
A PINN method in one dimension was developed, which learns a compact and efficient sur-
rogate model with parameterized moving sources and impedance boundaries and satisfies a
system of coupled equations. A fully data-free approach was taken, where only the underly-
ing physics are included in the training and their residual minimized through the loss function.
No data was included to train the model, allowing insights into how well PINNs predict sound
fields in acoustic conditions. The Gaussian impulse was used as the initial condition tested
with frequency-independent and dependent impedance boundaries, and the setup is depicted
in Figure 4.3. Including only information about the underlying physics, the governing partial
differential equation (PDE) and initial conditions (ICs) can be learned by minimizing the loss

argmin
𝐖,𝐛

(𝐖,𝐛) = PDE + 𝜆ICIC + 𝜆BCBC + ADE, (4.18)

where PDE, IC, BC, and ADE are the losses for the PDE, the initial condition, the bound-
ary conditions, and the coupled auxiliary equations used for approximating frequency-dependent
boundaries (Troian et al. 2017), respectively. The losses might have individual scaling; there-
fore, the weights 𝜆∙ have been added to balance the losses (weights for ADE are included in
the loss function itself). We exploit the automatic differentiation leveraged by modern soft-
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Figure 4.3: PINN scheme for frequency-dependent boundaries. Left: Two fully connected
Feed-Forward Neural Network architectures, 𝑓 (PDE + ICs) and ADE (ADEs). Right:
The governing physical equations and ADEs are coupled via the loss function (ICs and scaling
terms are omitted for brevity). Training is done when a maximum number of epochs is reached
or the total loss is smaller than a given threshold.
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4.2 Physics-informed neural networks

ware packages to evaluate the derivatives efficiently. For example, the PDE can be evaluated
as follows using Tensorflow through the SciANN (Haghighat et al. 2021) framework as

L = diff(p,x,order=2) - c^2*diff(p,t,order=2).

During the process of developing a PINN setup for the coupled wave equation for modeling
frequency-dependent boundaries, several learnings were found to have a huge impact on the
convergence and solution accuracy:

The loss components may have their own scale leading to difficulties when minimizing the
total loss function. For example, the neural network might be able to approximate the
initial conditions but not the boundary conditions. It could also respect both initial
and boundary conditions but not the PDE. In this work, the weights were determined
manually. Be aware that the loss ADE also consists of several weighted losses, one for
each accumulator.

Normalization of the auxilary outputs 𝜙0, 𝜙0, 𝜓 (0)
0 and 𝜓 (1)

0 in the loss ADE. The mag-
nitude of these quantities takes very small values; moreover, they vary by orders of
magnitude independently, causing troubles for the optimizer to find proper optima if
not normalized. The normalized values should only be used in the loss and not when
calculating the pressure at the boundary using the normal velocity 𝑢𝑛.

Activation choice. Using sine for the network 𝑓 activations predicting the pressures out-
performed the traditional choices.

Distribution of data samples with almost half of the samples located at the boundaries and
a quarter of the samples at the initial condition depicted in Figure 4.4. Without this
distribution, the BC and IC errors were never learned, and the errors were propagated
through the whole solution of the domain.
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Figure 4.4: Grid distribution between in-
ner points (30%), initial (25%) and boundary
(45%) points in a 1D domain of dimension 𝑥 ∈
[−1.0, 1.0] m. The temporal dimension is 𝑇 ∈
[0, 4] s with normalized speed of sound 𝑐 = 1
m/s corresponding to 𝑇phys = [0.0, 0.012] s for
𝑐phys = 343 m/s.
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4 Handling dynamic scenes with moving sources and receivers

4.2.3 State-of-the-art techniques
The development and use of PINNs is an active research area, and novel techniques for im-
proving their performance have appeared around and after the publication of this research,
and we will do a short review of the most relevant research.

The loss weights have been tuned by hand for this work, but these might not have been
the most optimal choices, and moreover, it is painful to find the right combination of weights.
Adaptive techniques for tuning the loss weights, referred to as dynamic loss weighting, have
been proposed in (S. Wang, Yu, et al. 2022; X. Jin et al. 2021; Bischof et al. 2021), and the
idea is to turn the loss weights into trainable parameters combined into a (separate) optimizer
updated according to some heuristic.

Like dynamic weights, self-adaptive weights scale the different contributions, but instead
of balancing the loss terms, the individual samples in each loss term are weighted. Using point-
wise weights (McClenny et al. 2023), the loss function can be minimized w.r.t. the network
parameters but maximized w.r.t. the point-wise loss weights. Applying self-adaptive weights,
the points with large residuals will be more important than those with smaller residuals.

The collocation points can be distributed in several ways. This work used a static Latin
hypercube sampling for the inner domain, with a relatively large portion of the overall samples
located at the IC and BCs. (Wu et al. 2023) has explored the use of resampling and residual-
based adaptive refinement techniques. Another recent paper titled ‘Respecting causality is
all you need for training physics-informed neural networks’ by (S. Wang, Sankaran, et al.
2022) has gotten much attention. Because we usually train PINNs using a set of collocation
points and try to minimize the PDE residual by giving equal importance to each point, we
may not respect physical causality. The authors in (S. Wang, Sankaran, et al. 2022; Daw et al.
2023) propose overcoming this problem by sampling and weighting techniques to propagate
the solution following its ‘preferential direction of propagation.’ For the wave propagation
problem, that could be to propagate the initial conditions first by giving more importance to
earlier times at earlier training steps and then gradually giving more importance to the later
times after more training iterations.

4.3 Neural operators
Neural operators represent a class of neural network architectures designed to directly solve
partial differential equations (PDEs) and other mathematical operators. Unlike traditional
function learning typically done in deep learning, neural operators aim to learn mappings
between infinite-dimensional Banach spaces. This methodology effectively captures the map-
ping from an input space of functions to an output space of functions, offering a generalized
solution for a parametrized PDE.

Among the most well-known neural operators are the DeepONet (Lu et al. 2021) and the
Fourier neural operator (FNO) (Z. Li et al. 2021). The DeepONet leverages the universal
approximation theorem for operators, while the FNO expresses itself as an integral operator
with a parameterized Green’s function in the Fourier space. Other neural operators, such as
the Wavelet neural operator (Tripura et al. 2023) and the Laplace neural operator (Cao et al.

32



4.3 Neural operators

2023), belong to the same class as the FNO, but they are parameterized in the Wavelet and
Laplace space, respectively. In our research, we have focused on investigating the DeepONet,
but considering the popularity of the FNO, both methods will be addressed theoretically.

The concept of approximating operators marks a paradigm shift from traditional machine
learning techniques, which predominantly concentrate on function approximation, to directly
solving PDEs. This approach represents a promising advancement in the field.

4.3.1 Neural operators
Let Ω ⊂ ℝ𝐷 be a bounded open set and  =  (Ω;ℝ𝑑𝑥 ) and  = (Ω;ℝ𝑑𝑦 ) two separable
Banach spaces. Furthermore, assume that  ∶  →  is a non-linear map arising from the
solution of a time-dependent PDE. The objective is to approximate the nonlinear operator via
the following parametric mapping

 ∶  × Θ →  or, 𝜃 ∶  →  , 𝜃 ∈ Θ (4.19)

where Θ is a finite-dimensional parameter space. The optimal parameters 𝜃∗ are learned via
the training of a neural operator with backpropagation based on a dataset {𝐮𝑗 , 𝛏𝑗}𝑁𝑗=1 generated
on a discretized domainΩ𝑚 = {𝑥1,… , 𝑥𝑚} ⊂ Ωwhere {𝑥𝑗}𝑚𝑗=1 represent the sensor locations,
thus 𝐮𝑗|Ω𝑚 ∈ ℝ𝐷𝑥 and 𝛏𝑗|Ω𝑚 ∈ ℝ𝐷𝑦 where 𝐷𝑥 = 𝑑𝑥 × 𝑚 and 𝐷𝑦 = 𝑑𝑦 × 𝑚.

4.3.2 Fourier neural operators
Fourier neural operators (FNO) introduced by (Z. Li et al. 2021) are based on parameterizing
the integral kernel in the Fourier space, and the method can be explained using Green’s func-
tions. A solution 𝑝 to the equation 𝑝(𝑥) = 𝑓 (𝑥), where  is a linear differential operator,
can be determined by the superposition of Green’s function solutions 𝐺𝑟 as

𝑝(𝑥) = ∫ 𝐺𝑟(𝑥, 𝑥0)𝑓 (𝑥0)d𝑥0. (4.20)

Once𝐺𝑟 is known, all functions 𝑝 can be found by convolving𝐺𝑟with 𝑓 . However, finding𝐺𝑟
is most often difficult or impossible. Therefore, the underlying idea for neural operators is to
construct layers that have function inputs as kernel convolutions against the input by replacing
the 𝐺𝑟(𝑥, 𝑥0) with a kernel function 𝜅Θ represented as a neural network. However, Green’s
functions are only defined for linear operators. To extend the approach to approximating a non-
linear operator𝑁 to solve𝑁𝑢 = 𝑓 (𝑥), 𝑁 is assumed to be locally linear for small enough Δ𝑡.
A family of 𝑇 Green’s functions 𝐺𝑟𝑡(𝑥, 𝑥0) represented as 𝜅𝑡(𝑥, 𝑥0) are then stacked together
to approximate the non-linear PDE as

∫ 𝐺𝑟𝑡(𝑥, 𝑥0)𝑢𝑡d𝑥0 ≈ ∫ 𝜅Θ𝑡 (𝑥, 𝑥0)𝑢𝑡(𝑥0)d𝑥0, (4.21)

where 𝑢0 is the first input lifted from an input 𝑎(𝑥) and 𝑢𝑡 is the solution from the 𝑡’th stacked
layer. An iterative solver for iterations 𝑡 = 1,… , 𝑇 can be formulated in terms of stacked
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4 Handling dynamic scenes with moving sources and receivers

Figure 4.5: Image reproduced from (Z. Li et al. 2021). (a) The full neural network ar-
chitecture: 1) The input function 𝑎(𝑥) goes into the network, 2) lift the input to a higher
dimension space by the neural network 𝑃 , 3) pass the function through 𝑇 stacked Fourier
layers, 4) project back the function to the target dimension space by the neural network𝑄. (b)
The Fourier layers: 1) the input function 𝑣 goes into the network, 2) apply the Fourier trans-
form to the input and apply a linear transform𝑅 consisting of learnable parameters, apply the
inverse Fourier transform, 3) add the output function to the output of a local linear transform
𝑊 consisting of learnable parameters applied to the input 𝑣.

layers as

𝑢𝑡+1(𝑥) = 𝜎
(
𝐖𝑡𝑢𝑡(𝑥) + ∫𝐷 𝜅Θ𝑡 (𝑥, 𝑥0)𝑢𝑡(𝑥0)d𝑥0

)
, (4.22)

where the solution is the result of the last layer 𝑝(𝑥) = 𝑢𝑇+1(𝑥). The term 𝐖𝑡𝑢𝑡(𝑥) has been
added to augment the network’s capacity to handle non-trivial boundary conditions that might
not be possible to capture depending on the kernel used. The network setup proposed in (Z.
Li et al. 2021) can be compactly written as

𝑝(𝑢) = 𝑄 ◦ 𝑇 ◦ ⋯ 2 ◦ 1 ◦ 𝑃 (𝑢), (4.23)
𝑡(𝑣)(𝑥) = 𝜎

(
𝑊𝑡𝑣(𝑥) +𝐾𝑡(𝑣)(𝑥)

)
. (4.24)

The new terms 𝑃 and𝑄 are shallow networks, 𝑃 being the encoder lifting the input to a higher
dimension, and 𝑄 being the decoder projecting back to the target dimension; 𝐾𝑡(𝑣)(𝑥) =∫𝐷 𝜅Θ𝑡 (𝑥, 𝑥0)𝑣(𝑥0)d𝑥0 is the integral from Equation 4.22. What remains to be handed is how
to solve this integral formulation. Many methods have been considered (Kovachki et al. 2023),
but the most successful method has been the Fourier neural operators (FNOs) approach (Z. Li
et al. 2021). Assuming that the operator is translation invariant, the kernel can be taken to be
a convolution kernel, that is

𝜅𝜃(𝑥, 𝑥0) = 𝜅𝜃(𝑥 − 𝑥0). (4.25)
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The solution to this integral can now be approximated efficiently using fast Fourier methods
resulting in multiplication in the Fourier domain instead of convolution in the time domain as

𝐾𝑡(𝑢𝑡)(𝑥) = −1
( (𝜅𝜃𝑡 ) ⋅  (𝑢𝑡)

)
(𝑥), (4.26)

where  is the Fourier transform. Now, the task is to learn 𝜅𝜃𝑡 , but instead 𝑅𝜃𝑡 =  (𝜅𝜃𝑡 ) is
learned. The FNO architecture is depicted in Figure 4.5.

4.3.3 DeepONet
DeepONet (Lu et al. 2021) is a general deep learning framework for approximating contin-
uous operators contrary to continuous functions, similar to the FNO. The underlying theory
stems from the universal operator approximation theorem (Chen et al. 1995), stating that a
neural network with a single hidden layer of infinite width can approximate any nonlinear
continuous functional or operator. Let 𝐺 be the operator we want to learn using NNs, defined
as 𝐺 ∶ 𝑢 ↦ 𝐺(𝑢), where 𝑢 is the input function to 𝐺 and 𝐺(𝑢) is the output function. For
any point, 𝑦 in the domain of 𝐺(𝑢), 𝐺(𝑢)(𝜉) ∈ ℝ is producing a real number. Translating
this into a neural network setting, the network takes two inputs, 𝑢 and 𝜉, and outputs 𝐺(𝑢)(𝜉).
The input function is discretized by evaluating 𝑢 at a finite number of points {𝑥𝑖} called ‘sen-
sors.’ The approximation theorem by Chen & Chen considers shallow networks and only
guarantees small approximation errors but does not consider generalization and optimization
errors. In (Lu et al. 2021), the authors extended the original theorem by proposing deep

Figure 4.6: DeepONet architecture with parameterized source position for predicting the
impulse response for a source/receiver pair over time for a 3D domain. The branch net is
taking as input a Gaussian source function 𝐮 determining the source position, sampled at
fixed sensor locations. The spatial coordinates 𝑥, 𝑦, 𝑧, and temporal coordinate 𝑡 are denoted
by 𝜉 and are used as input to the trunk net mapping into the output domain of the operator.
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neural networks instead of shallow networks and proved that the network is also universal ap-
proximators for operators. The proposed deep operator network, DeepONet, achieves small
total errors, including approximation, optimization, and generalization errors. The DeepONet
architecture depicted in Figure 4.6 consists of two subnetworks, the ‘branch net’ for the in-
put functions and the ‘trunk net’ for the locations to evaluate the output function 𝐺(𝑢). The
trunk network takes 𝜉 as input and outputs [𝑡𝑟1, 𝑡𝑟2,… , 𝑡𝑟𝑝] ∈ ℝ𝑝; the branch network takes
[𝑢(𝑥1), 𝑢(𝑥2),… , 𝑢(𝑥𝑚)]𝑇 at fixed sensors {𝑥1, 𝑥2,… , 𝑥𝑚} and outputs a scalar 𝑏𝑘 ∈ ℝ for
𝑘 = 1, 2,… , 𝑝. By merging the trunk and branch in terms of their inner product, we get

𝐺(𝑢)(𝜉) ≈
𝑝∑
𝑘=1

𝑏𝑘
(
𝑢(𝑥1), 𝑢(𝑥2),… , 𝑢(𝑥𝑚)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

branch

𝑡𝑟𝑘(𝜉)
⏟⏟⏟

trunk

+𝑏0, (4.27)

where 𝑏0 is a trainable bias added for more expressiveness.
The formulation of the Generalized Universal Approximation Theorem for Operators can

be found in (Lu et al. 2021) as well as in the Supplementary Material for Paper B. Similar
to the function approximation theorem, it only guarantees a small approximation errors for
a sufficiently large network but does not consider optimization or generalization errors, and
therefore, similar care should be taken as described in subsection 4.2.1 for ensuring good
performance.

4.3.4 A comparison between FNO and DeepONet
A debate concerning the performance between the FNO and DeepONet has recently evolved
in certain academic circles (Kovachki et al. 2023; Lu, Meng, et al. 2022; Hoop et al. 2022).
The intention of this section is not to add to this debate but to summarize the similarities and
differences between the methods.

For the FNO, restrictions are imposed on the neural network approximating 𝐺𝑟(𝑥, 𝑥0) so
that kernel convolution can be done in the Fourier domain in Equation 4.26. The function
𝑢𝑡 is the output from the previous stacked Fourier networks. In DeepONet, the integral is
solved directly by calculating the inner product of two neural networks, where the trunk net
approximates the set of basis functions, and the branch net approximates the corresponding
basis function coefficients

FNO: 𝑝̃𝑡(𝑥) = 𝜎
(

W𝑢𝑡(𝑥) + −1
(
𝑅𝜃𝑡 ⋅  (𝑢𝑡)

)
(𝑥)

)
(4.28)

DeepONet: 𝑝̃(𝑢, 𝜉) =
𝑝∑
𝑘=1

𝑏𝑘
(
𝑢(𝑥1), 𝑢(𝑥2),… , 𝑢(𝑥𝑚)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

coefficients

𝑡𝑟𝑘(𝜉)
⏟⏟⏟

basis functions

+𝑏0, (4.29)

We have neglected parts of the FNO for clarity, i.e., how the uplifting and stacking are done.
Where the role of the Green’s function is clear in FNO, it is less clear in DeepONet.

The input data structure to the FNO and DeepONet differs: for the DeepONet, the input
function 𝑢 is separated from the output locations 𝜉, which can be seen as an inductive bias
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𝑃 (𝜉|𝑢); the input to the FNO is {𝑢(𝑥1), 𝑢(𝑥2)}, which allows the network to intrinsically cap-
ture the non-linearities (assuming enough Fourier layers). The standard DeepONet structure
is a linear approximation of the target operator, where the branch and the trunk net learn
the coefficients and the basis, respectively. When the DeepONet can still successfully learn
non-linear operators, it is due to the non-linear activation functions in the branch and trunk
networks yielding enough expressivity.

A modification to the DeepONet architecture replacing the trunk net with pre-computed
POD has been proposed in (Lu, Meng, et al. 2022), bringing them closer to the FNO formula-
tion. The standard FNO formulation assumes the input function to be specified on a periodic
domain on a uniform grid and usually works out-of-the-box for these problems (Kovachki
et al. 2023). But, as a trade-off, it requires substantial additional treatments to perform well
on non-uniform geometries (Lu, Meng, et al. 2022).

4.3.5 Transfer learning

Transfer learning is a technique that leverages knowledge gained from one task (source) to
improve the performance of different but related tasks (target). The typical procedure is first
to train a source model from scratch on a particular task. Then, to learn a new but related task,
the learned model is used as a starting point and adapted to the new task on an eventually
smaller dataset. The key idea behind transfer learning is that the knowledge gained in the pre-
training on a rich dataset contains valuable information about general patterns and features in
the dataset. This knowledge can be used as a foundation and fine-tuned on a new target that
differs from the (original) source. This addresses the need for expensive data acquisition and
labeling as well as long and expensive training times.

In the context of DeepONet, (Goswami, Kontolati, et al. 2022) have proposed a new trans-
fer learning framework under conditional shift, where the marginal distribution of the source
and target data remains the same while the conditional distribution of the output differs; that
is 𝑃 (𝐱𝑠) = 𝑃 (𝐱𝑡) and 𝑃 (𝐲𝑠|𝐱𝑠) ≠ 𝑃 (𝐲𝑡|𝐱𝑡), where 𝐱𝑠 and 𝐱𝑡 are the source and target input
data, respectively, and 𝐲𝑠 and 𝐲𝑡 are the source and target output data, respectively. The idea
behind this method is to train the source model with sufficient data under a standard regres-
sion loss and transfer the model to a target model with limited data trained using a hybrid loss
consisting of the regression loss and a so-called conditional embedding operator discrepency
(CEOD) loss. The CEOD loss is used to measure the divergence between conditional distribu-
tions. When fine-tuning the target model, the first layers are frozen, and only the parameters
for the latter are trained. The CEOD loss was tried for the transfer learning part in Paper B but
did not improve the learning compared to solely applying the regression loss for our problem.

Another case where transfer learning can be used is for learning the model to extrapolate.
Extrapolating is a notoriously difficult task in machine learning (Barnard et al. 1992; Xu et
al. 2021; P. Jin et al. 2020), and transfer learning can be elevated to fit in this context by fine-
tuning the model in the extrapolation region. A recent paper by (Zhu et al. 2023) has explored
reliable extrapolation for DeepONet via multi-fidelity learning on sparse new observations.
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4.3.6 Network architectures (Paper B+C)
Choosing a suitable neural network architecture is important for reducing bias errors (i.e.,
underfitting). In Paper C, a sensitivity analysis showed that the modified MLP (mod-MLP)
outperformed the conventional MLP architecture. Moreover, a comparison between mod-
MLP and convolutional neural networks showed that the two architectures were on par. Based
on the findings, a similar setup using the mod-MLP was done in Paper B. In the following,
we will elaborate on the network architectures.

4.3.6.1 The modified multilayer perceptron

The key extension is the introduction of two encoder networks encoding the input variables
to a higher-dimensional feature space. The networks consisting of a single layer are shared
between all layers, and a pointwise multiplication operation is performed to update the hid-
den layers. Let the two encoder networks be denoted 𝑢(𝐱) and 𝑣(𝐱) and defined as a simple
perceptron

𝑢(𝐱) = 𝜎(𝐖𝑢𝐱 + 𝐛𝑢),
𝑣(𝐱) = 𝜎(𝐖𝑣𝐱 + 𝐛𝑣),

(4.30)

then the mod-MLP is defined as

𝐲 = ((1 − 𝑓0)⊙ 𝑢 + 𝑓0 ⊙ 𝑣) ◦
((1 − 𝑓1)⊙ 𝑢 + 𝑓1 ⊙ 𝑣) ◦

⋮

((1 − 𝑓𝑛)⊙ 𝑢 + 𝑓𝑛 ⊙ 𝑣)(𝐱),

(4.31)

where⊙ denotes elementwise multiplication, and 𝐖{𝑢,𝑣} and 𝐛{𝑢,𝑣} are the weights and biases
for the two encoder networks. The architecture is depicted in Figure 4.7, where the encoder
networks are applied separately for the branch and trunk net. This differs from the imple-
mentation in (S. Wang, H. Wang, et al. 2022), where only two encoder networks are shared
between the branch and trunk layer. The motivation behind the mod-MLP is to better propa-
gate information stably through the network since the trainability of the DeepONet depends
on merging the branch and trunk net in terms of their inner product only in the last layer.
Hence, if the input signals are not properly propagated through the network, this may lead to
ineffective training and poor model performance.

4.3.6.2 Convolutional Neural Network

Convolutional neural networks (CNN) are special networks for processing data with a grid-
like topology introduced by (LeCun et al. 1998) and use convolution instead of matrix mul-
tiplication in one or more layers. In traditional MLPs, each output unit interacts with each
input unit through weight parameters describing the interaction. In contrast, CNNs typically
have sparse interactions by applying a convolution kernel (much) smaller than the input di-
mension. Moreover, the convolutional kernel is used for every input position, meaning the
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Hidden layer Hidden layer Hidden layer Linear layer

Hidden layer Hidden layer Hidden layer Linear layer

{U,V} Encoders

{U,V} Encoders

Branch Net

Trunk Net

Figure 4.7: The modified MLP architecture applied for both the branch and the trunk net.
Two encoders 𝑢 and 𝑣 implemented as single-layer neural networks are applied for each MLP,
embedding the inputs into a latent space with the size of the layer width of the MLP. The
embedded features are then inserted into each hidden layer illustrated by ‘*’ performing the
operation (1 − 𝑓𝑖)⊙ 𝑢 + 𝑓𝑖 ⊙ 𝑣.

parameters are shared. Aside from reducing the storage requirement, it also causes the layer
to have equivalence to translation.

Although the networks in our work are not particularly deep, we will use the ResNet archi-
tecture (He et al. 2016) depicted in Figure 4.8. Several ResNet blocks assemble the ResNet.
A ResNet block (Figure 4.8(a)) consists of two stacked CNNs with skip connections and
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Figure 4.8: ResNet architecture consisting of several ResNet blocks.
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batch normalization; one or more ResNet blocks comprise a group (all with the same output
shape), and one or more groups connect the final ResNet (Figure 4.8(b)). Downsampling
takes place in the first block of each group (shown as a gray box) by increasing the strides,
and the output channel dimension is increased, forcing the CNN to capture essential features
in separate channels. We have used the notation ResNet-{gr1,gr2,gr3,...}, where the element
counts inside the square brackets denote the number of groups, and the values denote the num-
ber of blocks inside the group indexed by its position. The hidden channel layers are denoted
{ch1,ch2,ch3,ch4,...}, where each element index corresponds to the ResNet group with the
same index. In Paper C, we showed that using a ResNet-{3,3,3,3} with hidden channel layers
{16,32,64,128} for the branch net for approximating the wave equation operator in 2D was on
par with using the mod-MLP network.

4.4 Contributions
In Paper A and Paper B, we examine if scientific machine learning models can be used to accu-
rately and efficiently learn the acoustic sound field in dynamic scenes with parametric moving
sources incorporating impedance boundaries. In Paper C, we examine how the hyperparam-
eters, choices of architectures, and data resolutions impact the performance of DeepONets in
an acoustic setting. The contributions contained in Paper A are:

• A physics-informed neural network method in one dimension is proposed, which learns
a compact and efficient surrogate model with parameterized moving Gaussian sources
and impedance boundaries and satisfies a system of coupled equations. A data-free
approach was taken where only the underlying physics is included in the training and
their residual minimized through the loss function.
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Figure 4.9: Wave propagations in a 1D domain [−1, 1] m for five source positions with
frequency-dependent impedance boundaries. Each column corresponds to a source position
showing the reference, prediction, error, and impulse response.
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(a) (b) (c) (d)

Figure 4.10: Pictorial representations of the four domain geometries adopted in the Deep-
ONet. All the experiments have parametric moving sources allowed to move freely inside a
sub-domain of the room shown in shaded red. (a) Cubic room 2 m𝑥2 m𝑥2 m, (b) L-shape
room 3 m𝑥3 m𝑥2 m, (c) Furnished room 3 m𝑥3 m𝑥2 m, (d) Dome 36 m3.
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moving sources. The IRs and TFs references and predictions are at the bottom rows for the
quarter partition.

41



4 Handling dynamic scenes with moving sources and receivers

• The proposed method alleviates the need for pre-computing the impulse responses and
can predict impulse responses for any source/receiver pairs in a grid-less domain in real
time. A comparison with a reference solution is conducted for frequency-independent
and dependent boundary conditions showing relative mean errors below 2%/0.2 dB.
The results for frequency-dependent boundary conditions are depicted in Figure 4.9.

• Two multi-layer feed-forward neural networks have been set up; one predicts the pres-
sure field by solving the PDE, and one solves a system of ODEs predicting the so-called
accumulators used to calculate the normal velocity. The velocity is, in turn, used to
satisfy a boundary condition term solve in terms of pressure.

The contributions contained in Paper B are:

• A DeepONet in three dimensions is proposed, which learns a compact and efficient
surrogate model with parameterized moving Gaussian sources and impedance bound-
aries. The model aims to learn the linear wave-equation operators between infinite-
dimensional spaces. In doing so, the model should gain better generalization proper-
ties compared to models approximating the function space.

• The proposed method alleviates the need for pre-computing the impulse responses and
can predict impulse responses for any source/receiver pairs in a grid-less domain in
the millisecond-scale. Our experiments depicted in Figure 4.10 show good agreement
with reference solutions, with root mean squared errors ranging from 0.02 Pa to 0.10
Pa. The results for the dome geometry are shown in Figure 4.11.

• To investigate the scalability of the DeepONet, a domain decomposition approach was
proposed where separate DeepONets are trained on individual partitions for improved
accuracy. This technique showed a much-improved accuracy proposing a way to scale
the method to large-scale problems.

• To mitigate the bottleneck of large datasets and expensive training for achieving good
predictive performance, we have introduced a simple transfer-learning framework to
transfer knowledge between relevant domains explored for 2D domains. A speedup of
3× using 60% of the samples is reported on geometries close enough.

• Our method signifies a paradigm shift as no prior machine learning approach has
achieved precise predictions of complete wave fields within realistic domains.

The contributions contained in Paper C are:

• A sensitivity analysis is conducted for DeepONets in the context of sound field pre-
dictions in 2D. This study aims to understand the intrinsic subtleties of setting up a
performant DeepONet.

• The most prominent features impacting performance were the use of sine activation
functions in combination with the modified MLP. Resolutions of 4−6 ppw for the spa-
tiotemporal data and a source position density of one-fifth of a wavelength are required
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for acceptable generalizing properties. The Gaussian input function can be sampled at
the Nyquist limit with no performance degradation.

• Suggesting lower bounds on network complexities and data resolutions is especially
important to configure tractable DeepONets for 3D geometries. The finding is this
study can be used as a starting point, and specifically, the data resolution suggestions
can be used directly.
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CHAPTER 5

Conclusions and directions for
future research

This PhD study investigates methods to efficiently and accurately compute the acoustic sound
field in dynamic virtual environments with applications in virtual and augmented reality, com-
puter games, metaverses, and spatial computing. Specifically, the focus has been on calculat-
ing sound fields when sources are allowed to move freely, which is notoriously challenging
in current numerical methods. Numerical methods are computationally intensive and cannot
calculate the sound field in real-time, hence requiring the calculation of the impulse responses
for all source/receiver pairs to be done offline. This quickly gets intractable from a storage
perspective for large scenes. This thesis aimed to investigate methods that can be used in a
real-time setting, not requiring the pre-calculation of impulse responses. During the study,
two scientific machine-learning methods have been proposed. The first method uses physics-
informed neural networks to learn a surrogate model (Paper A), and the main conclusions are
the following:

• Physics-informed neural networks can accurately solve a system of coupled equations
for a 1D wave propagation problem with frequency-independent and dependent impedance
boundaries and moving sources with relative mean errors below 2%/0.2 dB. Real-time
prediction is achieved. No data is needed when including proper knowledge of the
physics in terms of the acoustic wave equation.

The second method uses the DeepONet framework (Paper B) to approximate the wave equa-
tion operators mapping from one infinity-dimension space to another infinity-dimension space.
The knowledge for setting up a performant architecture was gained from the investigation in
Paper C for a 2D domain and was only slightly modified for the 3D domain. The main con-
clusions are the following:

• DeepONet can effectively and accurately learn wave propagations in realistic and com-
plex 3D geometries with frequency-independent and dependent impedance boundary
conditions and moving sources. Four geometries are investigated in increasing order
of complexity, all showing good accordance with a reference model.

• Applying a domain decomposition technique shows a much-improved accuracy and
proposes a way to scale DeepONet to large-scale simulations.

• The model executes very efficiently, achieving millisecond-scale computations. All
models executed well below 100 ms, which is considered real-time, except for the
dome geometry. The reason is the increased dimensionality of the sensor locations
to the branch net, causing a large number of parameters in the input layers. A more
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efficient sampling of the sensor location or applying the ResNet architecture proposed
in Paper C could decrease the network size and improve the execution time.

Since data is required to efficiently train deep neural networks, efficient methods for generat-
ing accurate training data are investigated (Paper D). A domain decomposition method was
proposed, where a highly efficient but less flexible Fourier method is applied in rectangular
partitions containing air, and the flexible but less effective spectral element method is applied
in partitions near the boundaries. An interface handling scheme is proposed to transfer the
pressure sound field between the partition. The main conclusions are the following:

• The Fourier-SEM domain decomposition method in 1D indicates a notable perfor-
mance gain compared to applying the SEM in the full domain. Interface errors are
close to −36dB, and the relative mean error is between 5− 10%, which could be toler-
able for interactive virtual reality.

• A major drawback of the method is the need for adding an intermediate SEM layer of
1st order polynomials between the interface and the SEM partition. Due to the non-
physical behavior caused by forcing a Neumann boundary condition abruptly at the
interface at each time step, shocks are introduced, causing large errors in the approxi-
mation to the Laplacian when using high-order polynomials as basis functions.

Future research
Potential directions for future research are listed in the following. First, regarding the scientific
machine learning models:

• Training neural operators requires a large amount of data. Paper B showed that 73%
of the training time for the 3D DeepONet was spent on data loading. Investigating
Physics-Informed DeepONet (S. Wang et al. 2021) should reduce the amount of data
needed but add some extra cost for calculating derivates of the differential equations
when minimizing their residual for the loss.

• Obtaining large amounts of high-fidelity data takes a lot of computational and storage
resources. Multi-fidelity learning (Lu, Pestourie, et al. 2022; Howard et al. 2022; De
et al. 2022) could be exploited by learning the underlying features of the dataset by
training on low-fidelity data and fine-tuning on a smaller high-fidelity training data.

• For the applications of interest, directional sources are required, which is not consid-
ered in this study. However, naively training the DeepONet on a multitude of source
directivity patterns quickly gets intractable. Hence, methods for convolving the im-
pulse response obtained from omnidirectional sources with filters obtaining directivi-
ties should be investigated.

• Deep neural networks are notoriously challenged when extrapolating outside the train-
ing regime. A recent paper by (Zhu et al. 2023) has explored reliable extrapolation
for DeepONet via multi-fidelity learning on sparse new observations, and it could be
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interesting to apply this method to extrapolate in time or extend geometries for wave
propagation problems.

• Finally, a comparison between PINNs and PI-DeepONet concerning training time, pre-
diction accuracy, and evaluation time for 3D wave problems could be informative.

Second, regarding the Fourier-SEM domain decomposition method:

• A remedy to overcome the need to inject a layer of 1st-order polynomials in SEM
is most important for developing a scalable method. Further directions in filtering
methods should be investigated. So-called sponge layers forcing the SEM to satisfy
the Neumann boundaries could be considered.

• To properly investigate the Fourier-SEM’s numerical stability, accuracy, and perfor-
mance, a 2D or 3D implementation should be done.

• The Runge-Kutta time stepping scheme should be employed for better accuracy in the
SEM partition.
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Abstract: Realistic sound is essential in virtual environments, such as computer games and mixed reality. Efficient and accu-
rate numerical methods for pre-calculating acoustics have been developed over the last decade; however, pre-calculating
acoustics makes handling dynamic scenes with moving sources challenging, requiring intractable memory storage. A physics-
informed neural network (PINN) method in one dimension is presented, which learns a compact and efficient surrogate
model with parameterized moving Gaussian sources and impedance boundaries and satisfies a system of coupled equations.
The model shows relative mean errors below 2%/0.2 dB and proposes a first step in developing PINNs for realistic three-
dimensional scenes. VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In computer games and mixed reality, realistic sound is essential for an immersive user experience. The impulse responses
(IR) can be obtained accurately and efficiently by numerically solving the wave equation using traditional numerical meth-
ods, such as finite element methods,1 spectral element methods (SEM),2 discontinuous Galerkin finite element method,3

and finite-difference time-domain methods.4,5 For real-time applications spanning a broad frequency range, the IRs are
calculated offline due to the computational requirements. However, for dynamic, interactive scenes with numerous moving
sources and receivers, the computation time and storage requirement for a lookup database become intractable (in the
range of gigabytes) since the IR is calculated for each source-receiver pair. When covering the whole audible frequency
range, these challenges become even more extensive. Previous attempts to overcome the storage requirements of the IRs
include work for lossy compression,6 and lately, a novel portal search method has been proposed as a drop-in solution to
pre-computed IRs to adapt to flexible scenes, e.g., when doors and windows are opened and closed.7 A recent technique
for handling parameter parameterization and model order reduction for acceleration of numerical models is the reduced
basis method (RBM).8,9 Although very efficient, RBM cannot meet the runtime requirements regarding computation time
for virtual acoustics.

In this paper, we consider a new approach using physics-informed neural networks (PINNs)10–12 including
knowledge of the underlying physics (in contrary to traditional “black box” neural networks13) to learn a surrogate model
for a one-dimensional (1D) domain that can be executed very efficiently at runtime (in the range of ms) and takes up little
storage due to their intrinsic interpolation properties in grid-less domains. The applications of PINNs in virtual acoustics
are very limited,14,15 and the main contribution of this work is the development of frequency-dependent and independent
impedance boundary conditions with parameterized moving Gaussian sources, making it possible to model sound propa-
gation taking boundary materials properly into account. This work investigated PINNs for virtual acoustics in a 1D
domain—still taking the necessary physics into account—making it a possible stepping stone to model realistic and com-
plex 3D scenes for applications, such as games and mixed reality, where the computation and storage requirements are
very strict.

a)Author to whom correspondence should be addressed, ORCID: 0000-0002-8820-4635.
b)ORCID: 0000-0001-8626-1575.
c)ORCID: 0000-0002-9864-7317.
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2. Methods

We take a data-free approach where only the underlying physics is included in the training and their residual minimized
through the loss function, allowing insights into how well PINNs perform for predicting sound fields in acoustic condi-
tions. The Gaussian impulse is used as the initial condition tested with frequency-independent and dependent impedance
boundaries. To assess the quality of the developed PINN models, we have used our in-house open-source SEM
simulators.2

2.1 Governing equations

We consider in the following the use of PINNs for the construction of a surrogate model predicting the solution to the
linear wave equation in 1D,

@2pðx; tÞ
@t2

# c2
@2pðx; tÞ
@x2

¼ 0; t 2 Rþ; x 2 R; (1)

where p is the pressure (Pa), t is the time (s), and c is the speed of sound in air (m/s). The initial conditions (ICs) are sat-
isfied by using a Gaussian source for the pressure part and setting the velocity equal to zero,

pðx; t ¼ 0; x0Þ ¼ exp # x # x0
r0

! "2
" #

;
@pðx; t ¼ 0; x0Þ

@t
¼ 0; (2)

with r0 being the width of the pulse determining the frequencies to span.

2.2 Boundary conditions

We consider impedance boundaries and denote the boundary domain as C (in 1D, the left and right endpoints). We will
omit the source position x0 in the following.

2.2.1 Frequency-independent impedance boundaries

The acoustic properties of a wall can be described by its surface impedance16 Zs ¼ p=vn, where vn is the normal compo-
nent of the velocity at the same location on the wall surface. Combining the surface impedance with the pressure term
@p=@n ¼ #q0ð@vn=@tÞ of the linear coupled wave equation yields

@p
@t
¼ #cn @p

@n
; (3)

where n ¼ Zs=ðq0cÞ is the normalized surface impedance and q0 denotes the air density (kg=m3). Note that perfectly
reflecting boundaries can be obtained by letting n!1 being the Neumann boundary formulation.

2.2.2 Frequency-dependent impedance boundaries

The wall impedance can be written as a rational function in terms of the admittance Y ¼ 1=Zs and rewritten by using par-
tial fraction decomposition in the last equation (17)

YðxÞ ¼ a0 þ & & & þ aNð#ixÞN

1þ & & & þ bNð#ixÞN
¼ Y1 þ

XQ#1

k¼0

Ak

kk # ix
þ
XS#1

k¼0

Bk þ iCk

ak þ ibk # ix
þ Bk # iCk

ak # ibk # ix

! "
; (4)

where a, b are real coefficients; i ¼
ffiffiffiffiffiffi
#1
p

is the complex number; Q is the number of real poles kk; S is the number of
complex conjugate pole pairs ak6jbk; and Y1, Ak, Bk, and Ck are numerical coefficients. Since we are concerned with the
(time-domain) wave equation, the inverse Fourier transform is applied on the admittance and on the partial fraction
decomposition term in Eq. (4). Combining these gives17

vnðtÞ ¼ Y1pðtÞ þ
XQ#1

k¼0
Ak/kðtÞ þ

XS#1

k¼0
2 Bkw

ð0Þ
k ðtÞ þ Ckw

ð1Þ
k ðtÞ

h i
: (5)

The functions /k; wð0Þk , and wð1Þk are the so-called accumulators determined by the following set of ordinary differential
equations (ODEs) referred to as auxiliary differential equations (ADEs):

d/k

dt
þ kk/k ¼ p;

dwð0Þk
dt
þ akw

ð0Þ
k þ bkw

ð1Þ
k ¼ p;

dwð1Þk
dt
þ akw

ð1Þ
k # bkw

ð0Þ
k ¼ 0: (6)

The boundary conditions can then be formulated by inserting the velocity vn calculated in Eq. (5) into the pressure term
of the linear coupled wave equation @p=@n ¼ #q0ð@vn=@tÞ.
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2.3 PINNs

Two multi-layer feed-forward neural networks are setup,

f̂ : ðx; t; x0Þ 7!N f ðx; t; x0;W; bÞ; ĝ : ðx; t; x0Þ 7!N ADEðx; t; x0;W; bÞ;
where W and b are the network weights and biases, respectively; N ADE is only applied in case of frequency-dependent
boundaries. The networks take three inputs x; t; x0 corresponding to the spatial, temporal, and source position dimensions.
The network N f has one output p̂ðx; t; x0Þ approximating pðx; t; x0Þ predicting the pressure; the network N ADE is a multi-
output network with the number of outputs corresponding to the number of accumulators to approximate as explained in
the following.

Including only information about the underlying physics, the governing partial differential equation (PDE) from
Eq. (1) and initial conditions (ICs) from Eq. (2) can be learned by minimizing the mean squared error loss denoted k•k as

argmin
W;b

LðW; bÞ ¼ LPDE þ kICLIC þ kBCLBC þ LADE; (7)

where

LPDE ¼
$$$$
@2

@t2
N f ðxif ; t

i
f ; x

i
0;f ;W; bÞ # c2r2N f ðxif ; t

i
f ; x

i
0;f ;W; bÞ

$$$$; (8a)

LIC ¼
$$$$N f ðxiic; 0; x

i
0;ic;W; bÞ # exp #

xiic # xi0;ic
r0

 !2
2

4

3

5
$$$$þ

$$$$
@

@t
N f ðxiic; 0; x

i
0;ic;W; bÞ

$$$$: (8b)

Here, fxiic; xi0;icg
NIC
i¼1 denotes the initial NIC data points, fxif ; tif ; xi0;f g

Nf
i¼1 denotes the Nf collocation points for the PDE f, and

the penalty weights kIC and kBC are used for balancing the impact of the individual terms. The loss function LBC will be
treated separately for the impedance boundary conditions in the following, where fxibc; tibc; xi0;bcg

NBC
i¼1 will, correspondingly,

be denoting the NBC collocation points on the boundaries. For frequency-dependent boundaries, an auxiliary neural net-
work will be coupled, resulting in the additional loss term LADE in Eq. (7) and is explained in detail in the following.

2.3.1 Frequency-independent impedance boundary loss functions

The frequency-independent boundary condition, Eq. (3), is included in the loss function LBC :¼ LINDEP satisfied by
LINDEP ¼ kð@=@tÞN f ðxibc; tibc; xi0;bc;W; bÞ þ cnð@=@nÞN f ðxibc; tibc; xi0;bc;W; bÞk.

2.3.2 Frequency-dependent impedance boundary loss functions

For frequency-dependent boundaries, the ADEs need to be solved as well, approximating the ODEs from Eq. (6) by intro-
ducing an additional neural network N ADEðxb; t; x0;W; bÞ parameterized by xb and x0 for boundary positions and

moving sources, respectively. The network has multiple outputs N ADEðxb; t; x0;W; bÞ ¼ ½~/0; ~/1;…; ~/Q#1; ~w
ð0Þ
0 ; ~w

ð0Þ
1 ;…;

~w
ð0Þ
S#1;

~w
ð1Þ
0 ; ~w

ð1Þ
1 ;…; ~w

ð1Þ
S#1( corresponding to the scaled accumulators determined by a scaling factor l•ADE, mapping

~/k ¼ l/k
ADE/̂k; ~w

ð0Þ
k ¼ lwk

ADEŵ
ð0Þ
k ; and ~w

ð1Þ
k ¼ lwk

ADEŵ
ð1Þ
k , such that ~/k; ~w

ð0Þ
k ; ~w

ð1Þ
k : ðxb; t; x0Þ7!½#1; 1( matching the range of the

tanh function used in this work. The scaling factors are independent of the geometry and domain dimensionality, only the
material properties determine the amplitude of the accumulators. In this work, the scaling factors are determined using
the SEM solver, but might be analytically estimated from the accumulators considering only a single reflection in a 1D
domain. A graphical representation of the neural network architectures for approximating the governing physical equa-
tions and ADEs is depicted in Fig. 1. The accumulators with parametrized moving sources and boundary positions
~/kðxibc; tibc; xi0;bcÞ; ~w

ð0Þ
k ðxibc; tibc; xi0;bcÞ; ~w

ð1Þ
k ðxibc; tibc; xi0;bcÞ can be learned by minimizing the mean squared error loss as (argu-

ments omitted)

argmin
W;b

LADEðW; bÞ ¼
XQ#1

k

~k
~/k

ADEL~/k
þ
XS#1

k

~k
~w
ð0Þ
k

ADEL~w
ð0Þ
k
þ ~k

~w
ð1Þ
k

ADEL~w
ð1Þ
k

! "
; (9)

where

L~/k
¼
$$$$
@

@t
~/k þ kk~/k # l/k

ADEN f

$$$$; (10a)

L~w
ð0Þ
k
¼
$$$$
@

@t
~w
ð0Þ
k þ ak~w

ð0Þ
k þ bkl

wð0Þk
ADEð1=l

wð1Þk
ADEÞ~w

ð1Þ
k # l

wð0Þk
ADEN f

$$$$; (10b)

L~w
ð1Þ
k
¼
$$$$
@

@t
~w
ð1Þ
k þ ak~w

ð1Þ
k # bkl

wð1Þk
ADEð1=l

wð0Þk
ADEÞ~w

ð0Þ
k

$$$$; (10c)

and
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~k
~/k

ADE ¼ ð1=l
/k
ADEÞk

~/k
ADE;

~k
~w
ð0Þ
k

ADE ¼ ð1=l
wð0Þk
ADEÞk

~w
ð0Þ
k

ADE;
~k

~w
ð1Þ
k

ADE ¼ ð1=l
wð1Þk
ADEÞk

~w
ð1Þ
k

ADE:

The frequency-dependent boundary conditions are satisfied by LDEP ¼ kð@=@nÞN f ðxibc; tibc; xi0;bc;W; bÞ

þq0½@vnðxibc; tibc; xi0;bcÞ=@t(k, where vn is the expression at the boundaries given in Eq. (5) with /̂k ¼ 1=l/k
ADE

~/k; ŵ
ð0Þ
k

¼ 1=l
wð0Þk
ADE

~w
ð0Þ
k ; and ŵ

ð1Þ
k ¼ 1=l

wð1Þk
ADE

~w
ð1Þ
k , ensuring that the accumulators are properly re-scaled. The loss is included as the

term LBC :¼ LDEP in Eq. (7) together with the loss for the ADEs in Eq. (9).

2.4 Setup

TENSORFLOW 2.5.1,18 SCIANN 0.6.4.7,19 and PYTHON 3.8.9 with 64 bit floating points for the neural network weights are used.
The code for reproducing the results can be found online.20

Reference data for impedance boundaries are generated using a fourth-order Jacobi polynomial SEM solver. The
grid was discretized with 20 points per wavelength spanning frequencies up to 1000Hz yielding an average grid resolution
of Dx ¼ 0:017m, and the time step was Dt ¼ CFL) Dx=c, where CFL is the Courant-Friedrichs-Lewy constant
(CFL ¼ 1:0 and CFL ¼ 0:1 for frequency-independent and dependent boundaries, respectively). The speed of sound
c¼ 1m/s is used for the PINN setup, implying Dx ¼ Dt=c ¼ Dt, which is a normalization introduced to ensure the same
scaling in time and space required for the optimization problem to converge. In case of a normalized speed of sound, the
effective normalized frequency is correspondingly f ¼ fphys=cphys, since the wave is now travelling slower compared to the
physical setup. To evaluate the results for a physical speed of sound cphys ¼ 343m/s, the temporal dimension should be
converted back as tphys ¼ t=cphys s. In case of frequency-dependent boundaries, the velocity from Eq. (5) needs to be nor-
malized accordingly regarding frequency and flow resistivity rmat ¼ rmat; phys=cphys in Miki’s model. Fitting the parameters
for c¼ 1m/s yields modified kk, ak, bk, and Y1 values resulting in the exact same surface impedance as for c¼ 343m/s,
but scaled by cphys in frequency range and amplitude. This can be seen from the complex wavenumber and characteristic
impedance of the porous medium in Miki’s model involving f =rmat and 2pf =c not being affected by normalization.20

The point distribution in time and space, number of sources, penalty weights k and scaling factors lADE for the
ADEs are listed in Table 1. Note that the number of (time and space) domain points (30%) per source (7) is
47 089) 0:3=7 ¼ 2018, satisfying the Nyquist theorem, since Dx ¼ 2=

ffiffiffiffiffiffiffiffiffiffi
2018
p

¼ 0:045m (we can use the square root to get
the gridpoint distribution in the spatial dimension) resulting in ppw ¼ kw=Dx ¼ 7:6 points per wavelength; kw ¼ c=f

Fig. 1. PINN scheme for frequency-dependent boundaries. Left: Two fully connected feed-forward neural network architectures, N f

(PDEþ ICs) and N ADE (ADEs). Right: The governing physical equations and ADEs are coupled via the loss function (ICs and scaling terms
are omitted for brevity). Training is done when a maximum number of epochs is reached, or the total loss is smaller than a given threshold.

Table 1. Number of points in time and space; inner domain, boundaries, and initial condition point distributions; number of evenly distrib-
uted sources (srcs); values for the penalty weights k; scaling factors l for normalizing the accumulators.

#total #BC #IC #innera #srcs kIC kBC k*ADE l/0
ADE l/1

ADE lw
ð0Þ
0

ADE lw
ð1Þ
0

ADE

47; 089 45% 25% 30% 7 20 1 10 10.3 261.4 45.9 22.0

aThe centered Latin hypercube sampling strategy (Ref. 24) is used.
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being the wavelength for physical frequency 1000Hz and physical speed of sound 343m/s. For the neural network, we
have used the ADAM optimizer and the mean-squared error for calculating the losses for both networks. The training was
run with learning rate 1e#4 and batch size 512 until a total loss of ! ¼ 2e# 4 was reached (roughly 16k and 20k epochs
needed for frequency-independent and dependent boundaries, respectively). The relatively big batch size was chosen to
ensure that enough initial and boundary points were included in the optimization steps.

The network architecture of N f consists of three layers, each with 256 neurons applying the sine activation func-
tion in each layer except for a linear output layer, with proper weight initialization.21 Using sine activation functions can
be seen as representing the signal using Fourier series22 and is probably the reason for a significantly better convergence
compared to using the more common choice of tanh activation functions. However, experiments showed degraded inter-
polation properties using sine activation functions when the network was trained on grids with source positions distributed
more sparsely (0.3m), even when lowering the number of neurons to prevent overfitting. A reason could be related to the
distributed source interval violating the Nyquist sampling theorem Dx < c=ð2f Þ ¼ 0:17m and causing aliasing effects, but
this remains an open question. Therefore, the source positions were distributed evenly with finer resolution to improve the
results between the source positions, consequently resulting in a sparser grid per source by keeping the total number of
points the same. Despite the sparser grid, the convergence and final error still showed satisfying results. Distributing the
source positions more densely is trivial in a data-free implementation, but if a combination of the underlying physics and
simulated/measured data is considered later, a large number of source positions could be practically challenging.

The network architecture of N ADE consists of three layers, each with 20 neurons applying the tanh activation
function in each layer except for a linear output layer, with Glorot normal initialization of the weights.23 Using the tanh
function is an obvious choice since we have chosen to scale the accumulators to take values in the range ½#1; 1(.

3. Results

Frequency-independent and dependent boundary conditions are tested, each with parameterized moving sources trained at
seven evenly distributed positions x0 ¼ ½#0:3;#0:2;…; 0:3(m and evaluated at five positions x0 ¼ ½#0:3;#0:15; 0:0;
0:15; 0:3(m. Additional results are included as supplementary materials.20 The source is satisfied through the initial

Fig. 2. Wave propagations in a 1D domain ½#1; 1(m.
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condition modeled as a Gaussian impulse from Eq. (2) with r0 ¼ 0:2 spanning frequencies up to 1000Hz. The speed of
sound cphys ¼ 343m/s and air density q0 ¼ 1:2 kg=m3 are used for all studies.

First, we test the frequency-independent boundary condition with normalized impedance n ¼ 5:83 depicted in
Fig. 2(a). Frequency-independent boundaries with corresponding wave propagation animations available from Mm. 1. Then,
we test the frequency-dependent impedance boundary condition, where the boundary is modeled as a porous material
mounted on a rigid backing with thickness dmat ¼ 0:10m with an air flow resistivity of rmat;phys ¼ 8000Nsm#4. The surface
impedance Y of this material is estimated using Miki’s model25 and mapped to a two-pole rational function in the form of
Eq. (4) with Q¼ 2 and S¼ 1 using a vector fitting algorithm26 yielding the coefficients for Eq. (5). The results are depicted
in Fig. 2(b). Frequency-dependent boundaries with corresponding wave propagation animations available from Mm. 2.

Mm. 1. Frequency-independent boundaries, animation. Same parameters as Fig. 2(a). Frequency-independent bound-
aries. File of type “mp4” (1.3 MB).

Mm. 2. Frequency-dependent boundaries, animation. Same parameters as Fig. 2(b). Frequency-dependent boundaries.
File of type “mp4” (1.6 MB).

We observe that the shape of the wave propagations is well captured, and the impulse responses also fit the ref-
erence solutions very well for all boundary types. The relative mean error lrelðx; x0Þ ¼ ð1=NÞ

PN#1
i¼0 ½jp̂ðx; ti; x0Þ

#pðx; ti; x0Þj=pðx; ti; x0Þ( within #60 dB and absolute maximum error 1absðx; x0Þ ¼ maxfjp̂ðx; ti; x0Þ # pðx; ti; x0Þj : i
¼ 0 & & &N # 1g of the impulse responses originating from various source and receiver positions are summarized in Table 2.
Relative errors are below 2%/0.2 dB for all predictions. The absolute maximum errors are below 0.011 Pa for all predictions
indicating that no severe outliers are present.

4. Conclusion and future work

A novel method is presented for predicting the sound field in a 1D domain for impedance boundaries and parameterized
moving Gaussian sources using PINNs. A coupled system of differential equations, consisting of the governing physical
equations and a system of ODEs predicting the accumulators of the ADEs, was used for training the PINN. The equations
for the ADEs depend only on time t but were parameterized to take boundary and source positions into account, yielding
a very flexible implementation. The results are promising, with relative mean errors below 2%/0.2 dB for all cases. The
approach taken by learning a compact surrogate model that is inexpensive to evaluate at runtime shows potential to over-
come current numerical methods’ limitations in modeling flexible scenes, such as moving sources.

Compared to standard numerical methods, the PINN method takes up to three orders of magnitude more time
to converge. Therefore, to solve realistic problems in 3D, the convergence rate needs to be improved. This is partly due to
the need for fairly large amounts of grid points with 70% of the points located at the initial time step and at boundaries
where penalty weights are also needed for balancing each loss term. Formulating an ansatz imposing initial and boundary
conditions directly could overcome this problem.27 Also, considering other architectures taking (discrete) time-dependence
into account instead of optimizing the entire spatiotemporal domain at once might improve the learning rate and produce
more precise results. Moreover, we have observed challenges in the global optimizer for a larger domain size and/or by
increasing the frequency due to the ratio between zero and non-zero pressure values. Domain decomposition methods28

have been introduced to overcome this limitation. In ongoing work, more complex benchmarks are being considered.
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Abstract

We address the challenge of acoustic simulations in 3D virtual rooms with parametric source
positions, which have applications in virtual/augmented reality, game audio, and spatial
computing. The wave equation can fully describe wave phenomena such as diffraction and
interference. However, conventional numerical discretization methods are computationally
expensive when simulating hundreds of source and receiver positions, making simulations
with parametric source positions impractical. To overcome this limitation, we propose us-
ing deep operator networks to approximate linear wave-equation operators. This enables
the rapid prediction of sound propagation in realistic 3D acoustic scenes with parametric
source positions, achieving millisecond-scale computations. By learning a compact surro-
gate model, we avoid the offline calculation and storage of impulse responses for all relevant
source/listener pairs. Our experiments, including various complex scene geometries, show
good agreement with reference solutions, with root mean squared errors ranging from 0.02
Pa to 0.10 Pa. Notably, our method signifies a paradigm shift as – to our knowledge – no
prior machine learning approach has achieved precise predictions of complete wave fields
within realistic domains.

Keywords: Virtual acoustics, Operator learning, DeepONet, Transfer learning, Domain
decomposition

1. Introduction

Wave phenomena are precisely described by solving partial differential equations (PDEs)
with their approximate solutions found using numerical methods. Many methods exist, such
as finite-difference time-domain methods (FDTD) [1], finite-volume time-domain methods
(FVTD) [2], finite/spectral element methods (SEM) [3], discontinuous Galerkin methods
(DG-FEM) [4], boundary element methods (BEM) [5], and pseudo-spectral Fourier methods
[6], and are all part of the standard toolbox used to successfully solve a variety of real-world
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physical problems over the last decades. Determining which method to use depends on the
nature and difficulty of the problem, geometric complexity, and trade-offs between accuracy
and efficiency. However, all these methods require recalculating solutions for different condi-
tions, including initial and boundary conditions, geometry, and specified source and receiver
positions. Obtaining a solution even on a 2D domain is often computationally expensive;
hence, solving parameterized PDEs involving multiple parameters or varying conditions can
quickly get intractable.

In this work, we address the challenges in solving the wave equation for the four geometries
depicted in Figure 1 considering its relevance in virtual acoustics, which plays a pivotal role
in computer games, mixed reality, and spatial computing [7]. Creating a realistic auditory
environment in these applications is crucial for an immersive user experience. The impulse
responses (IR) characterizing the room’s acoustical properties for a source/receiver pair can
be obtained using the numerical methods referenced at the beginning of the section. This
is done offline for real-time applications due to the computational requirements, especially
when spanning a broad frequency range. However, for dynamic, interactive scenes with nu-
merous parametric source and receiver pairs, the storage requirement for a lookup database
becomes intractable (in the gigabytes range). These challenges become even more extensive
when covering the audible frequency range up to 20 kHz. Employing surrogate models to
learn the parametrized solutions to the wave equation to obtain a one-shot continuous wave
propagation in interactive scenes [8] offers an ideal framework to address the prevailing chal-
lenges in virtual acoustics applications, effectively surpassing the limitations of traditional
numerical methods.

The idea of approximating continuous nonlinear operators for parametrized PDEs from
labeled data was first introduced in 1995 by Chen & Chen [9] providing a universal operator
approximation theorem for shallow neural networks, guaranteeing small approximation errors
(the error between the target operator and the predictions from a class of infinitely wide
neural network architectures). Recently in 2019, Lu et al. [10] reformulated Chen & Chen’s
theorem and generalized the work by proposing the deep operator network architecture
‘DeepONet,’ which exhibits small generalization errors (the ability of a neural network to
produce small errors for unseen data). Acknowledging the previous successful application of
DeepONet in fracture mechanics [11], diesel engine [12], microstructure evolution [13], bubble
dynamics [14], bio-mechanics to detect aortic aneurysm [15] and airfoil shape optimization
[16], to name a few, we consider this to be a suitable candidate for our problem.

Despite being a simple non-stiff second-order linear hyperbolic PDE, solving the wave
equation is still challenging due to its multi-modal broadband-frequency nature. Therefore,
learning a compact and efficient surrogate model to approximate the continuous operators
of the wave equation emerges as a valuable solution for addressing a significant real-world
challenge, such as virtual acoustics. The resulting DeepONet-based surrogate model should
then: 1) predict the wave field propagation in rooms with parameterized sources and realistic
frequency-dependent sources; 2) produce sufficiently accurate predictions for intended appli-
cations; and finally, 3) infer in real-time (< 100 ms). However, the predictive performance
of DeepONet is often restricted by the availability of high-fidelity labeled datasets used for
training. Moreover, undertaking isolated learning, which involves training a single predictive
model for different yet related single tasks, can be exceedingly expensive. To mitigate this
bottleneck, we have introduced a simple transfer-learning framework to transfer knowledge
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between relevant domains [17]. The transfer learning framework allows the target model
to be trained with limited labeled data to approximate solutions on a different but related
domain, achieving the same accuracy as the source model, a model trained with a sufficiently
labeled dataset on a specific domain. Finally, we push the boundaries of the seminal Deep-
ONet to propose a domain-decomposition framework, which leverages the inherent property
of deploying multiple deep neural networks in smaller subdomains, allowing for paralleliza-
tion. Additionally, it is designed to handle large complex geometries, further expanding the
applicability and scalability of the DeepONet method.

a) Cubic room 2m x 2m x 2m b) L-shape room 3m x 3m x 2m d) Dome 36m3c) Furnished room 3m x 3m x 2m

Figure 1: Pictorial representations of the domain geometries adopted in this work to evaluate the predicted
3D sound fields. All the experiments have parametric source positions allowed to move freely inside a sub-
domain of the room shown in shaded red.

2. Results

Four geometries, in increasing order of complexity, depicted in Figure 1, have been con-
sidered to evaluate the predicted 3D sound fields in a) a cubic 2 m× 2 m× 2 m room with
frequency-dependent boundaries, b) an L-shape room with outer dimensions 3 m×3 m×2 m
and frequency-dependent boundaries, c) a furnished room 3 m× 3 m× 2 m with frequency-
dependent walls, ceiling and floor, and frequency-independent furniture, and d) a dome with
a volume of 36 m3 consisting of frequency-independent boundaries. For all the geometries,
the models are learned through a final simulation time T = 0.05 seconds with parametric
source positions allowed to move freely inside a sub-domain of the room shown in shaded red.
The simulation time was chosen long enough to capture enough information to be meaningful
and small enough to make the data generation and training time tractable. The impulse
response consists of a direct sound followed by early reflections, which plays a key role in
sound perception in rooms up to about 50-100 ms [18, 19] – slightly above the simulation
time in this work. After the sound propagates over time, the response approaches decaying
Gaussian noise, referred to as late reverberation. This part is known to be less crucial in
sound perception and could be approximated by some statistical method [20].

Two experiments for the dome are performed; one where the model is trained for receiver
positions in the full domain and another where the model is trained for receiver positions in
1/4 of the domain (denoted ‘quarter model’ in the rest of the manuscript); both cases allow
for the source to move freely in the same subdomain. The quarter model applies a domain
decomposition approach where separate DeepONets are trained on individual partitions for
improved accuracy.
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Figure 2: Cubic room 2× 2× 2 m3. Results show the sound field at t = 0.003 s for five parameterized source
positions. The wave field error is depicted in the second row, and the IRs and TFs references and predictions
are at the two bottom rows. ‘o’=source position, ‘x’=receiver position.

The training data has been generated using ppw = 6 points per wavelength, whereas
validation and testing data has been generated using ppw = 5 to ensure (mostly) non-
overlapping spatial samples to investigate the model’s generalization capabilities; i.e., how
well the network interpolates at the receiver position, which is crucial for the applications
of interest. The input function denoting a Gaussian pulse acting as an initial condition
(Equation 2) is sampled at the Nyquist limit, whereas the density of the source positions
is sampled at one-fifth of a wavelength for the training data, one full wavelength for the
validation data, and five positions for the test data. Details about the data set and DeepONet
network setup can be found in Materials and Methods. The data set sizes are summarized in
Table B.1 ranging from 5.8M− 21.5M training samples, depending on the complexity of the
geometry. The testing data is generated on the same grid as the validation data (different
from the training data grid) but only for the five source/receiver pairs. Representative plots
of the wave field reference and the corresponding error for the four geometries are presented in
Figures 2-5. The plots also present the reference and prediction for the impulse response and
the transfer function shown for each source/receiver pair. In Table B.2, the root mean square
error (RMSE) for the IR is reported after performing 50 − 70k iterations until saturation
(Figure B.9).

2.1. Cubic room

Figure 2 shows an almost perfect fit between references and predictions and only minor
differences in the upper-frequency range with a mean broadband RMSE of 0.03 Pa.
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Figure 3: L-shape room with outer dimension 3× 3× 2 m3. Results show the sound field at t = 0.005 s for
five parameterized source positions. The wave field error is depicted in the second row, and the IRs and TFs
references and predictions are at the two bottom rows. ‘o’=source position, ‘x’=receiver position.

2.2. L-shape room

Similar to the previous example, in Figure 3, we see a good match between reference and
prediction but with bigger deviations in the upper-frequency range above the 700–800 Hz
limit. This deviation is also reflected in the mean RMSE of 0.05 Pa.

2.3. Furnished room

As shown in Figure 4, the wave propagation is well captured with quite good agreement
between reference and prediction. Still, some inaccuracies are lacking for the sharp peaks,
which can also be seen in the upper-frequency range above 600–700 Hz. The mean RMSE
is 0.09 Pa, almost twice the error compared to the L-shape room and three times the error
compared to the Cubic room.

2.4. Dome

The results for both the full and quarter models are evaluated at the same source and
receiver positions for comparison shown in Figure 5. The receiver positions are restricted
to the 1st quadrant where the quarter model was trained (denoted by the red square) and
evaluated at five source/receiver pairs. The wave propagation is well captured for both the
full and quarter models, with good agreement between the reference and the prediction.
However, not all sharp peaks are well captured for the full model. The fit in the frequency
domain is better than the furnished room but not quite as good as for the cubic and L-shape
rooms, also indicated by the mean RMSE of 0.08 Pa. Applying domain decomposition and
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Figure 4: Furnished room 3 × 3 × 2 m3. Results show the sound field at t = 0.005 s for five parameterized
source positions. The wave field error is depicted in the second row, and the IRs and TFs references and
predictions are at the two bottom rows. ‘o’=source position, ‘x’=receiver position.

only training and evaluating the receivers in 1/4 of the domain gives significantly better
results with a better fit in both the time and frequency domain, reporting a mean RMSE of
0.03 Pa on par with the cubic domain.

2.5. Run-time efficiency

For real-time applications, we assess the inference time of trained networks with identical
layer and neuron configurations, except for the input layer of the branch net, which varies
based on the geometry shape. This variation affects parameters and forward propagation
performance. Summary information, including parameter count and total storage, is pro-
vided in Table B.3. Using an Nvidia V100 GPU, we predicted impulse responses of length
T = 0.5 s (increased ten times compared to previous experiments), sampled at fs = 2000
Hz, for five receiver positions. Execution times for the cubic, L-shape, furnished, and dome
geometries were 39 ms, 49 ms, 49 ms, and 132 ms, respectively. Apart from the dome, these
times comfortably meet the real-time threshold of 96 ms established by previous experiments
[21]. Crossing this threshold would introduce significant degradation in azimuth error and
elapsed time. The longer execution time for the dome is due to the larger input space covered
by discretized input functions, spanning a larger volume compared to other geometries. Our
DG-FEM data generation code constructs input function sizes based on the smallest enclos-
ing bounding box and uniform distribution of samples, resulting in unused function values
outside the dome geometry. Furthermore, the modified MLP network architecture expands
the input layers, increasing the network size compared to a standard MLP network. Con-
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Figure 5: Dome 36 m3. Results show the sound field at t = 0.01 s for five parameterized source positions.
The IRs and TFs references and predictions are at the two bottom rows for the full and quarter partition.
The red square denotes the receiver positions where the quarter model was trained.

volutional neural networks, as demonstrated in [22], offer comparable accuracy to modified
MLPs while potentially enhancing inference speed.

2.6. Training time

Overall the training times for the 3D geometries are between one and three days on a
single GPU. We divide the training time per iteration into data loading and weight/bias
update encompassing forward/backward propagation. Our experiments were conducted in
the 2D and 3D furnished rooms, as summarized in Table S4. Notably, training in 3D is
approximately 64 times slower per iteration compared to 2D. In 2D, the data size of 229
MB fits in memory, while in 3D, the data size is 119 GB, necessitating streaming from
disk1. This disparity is the primary reason for the significant increase in training time. Data

1960 GB SATA SSD connected to a node at the DTU Computing Center [23].
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Figure 6: Comparative convergence plots of the reference model and the fine-tuned target model for transfer
learning scenarios.

loading takes 2.1 seconds in 3D, while 2D (loaded from memory) only requires 32.7 ms.
Consequently, the loading time is more than 1,200× longer in the 3D scenario. Additionally,
the time for weights and biases update is 18× longer in 3D than in 2D due to the larger
network size, while assuming similar accuracy, as both models in 2D and 3D exhibit a mean
RMSE of 0.09 Pa.

2.7. Transfer learning

In Figure 6, the convergence rates for training a reference model from scratch and em-
ploying a well-trained source model to initialize the weights on a target model followed by
fine-tuning are compared. Three cases are considered, a) a square 3 × 3 m2 to a square
2× 2 m2, b) a square 3× 3 m2 to a furnished square 3× 3 m2, and c) an L-shape geometry
with outer dimensions 3× 3 m2 to an L-shape geometry with outer dimensions 2.5× 2.5 m2.
Significant improvements in training time are seen for cases a) and b), with a 3× speedup
using only 60% of the data samples on the target domain. Mini-batching for the target model
in transfer learning using the spatiotemporal batch size Q = 600 instead of Q = 200 for the
source model nearly triples the training time but enhances the initial convergence rate, lead-
ing to sharper convergence. This effect could also be present in training the reference model,
reaching the cross-over point sooner. However, the training time would increase beyond the
time saved by a sooner cross-over, making this approach less effective. For example, the
L-shape reference would cross at 16k iterations, taking 25 minutes using Q = 600, compared
to 25k iterations, taking only 15 minutes using Q = 200. The convergence for training the
2× 2 m2 rectangular reference model would remain unchanged. In the case of the furnished
shape, using the larger batch size narrows the performance gap between the reference and
transfer learning in terms of both loss and time. Therefore, the reference model with the
larger batch size is chosen for a fair comparison. Additionally, when utilizing only 60% of
the samples, the convergence points for the reference and transfer models align earlier for
the L-shape and furnished geometries.
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3. Discussion

The results demonstrate good agreement between the prediction and reference for all five
source/receiver pair positions, with RMSE values below 0.10 Pa. However, some inaccuracies
are observed for sharp peaks and high-frequency content in both time and frequency domains,
particularly in the furnished room and, to some extent, the full dome, primarily due to the
large source position volume and domain volume, respectively. The cubic room shows the
best result with a mean RMSE of 0.03 Pa, compared to 0.09 Pa for the furnished room,
mainly due to the relatively small volume. The dome’s source position subdomain has 1,849
source positions compared to 2,826 − 4,799 source positions in the other geometries, which
is considerably smaller. However, the predictions are less accurate primarily due to the
large volume and, to a lesser extent, due to the geometrical complexity. To investigate
the scalability of the DeepONet, instead of increasing the network sizes not necessarily
yielding better accuracy/convergence, we applied a simple domain decomposition technique
limiting the operator to be evaluated in 1/4 of the domain, still predicting for all 1,849
source positions. This technique showed much-improved accuracy on par with the cubic
room, proposing a way to scale these methods to large-scale simulations. Applying the same
technique to the furnished room should also increase its accuracy. However, it comes with
the disadvantage of training additional DeepONets scaling with the number of partitions.

DeepONet more easily learns lower-frequency modes than higher-frequency modes. Using
the sine activation function and employing Fourier expansion in the input layer to span
multiple periods accomplishes the goal of helping the network learn higher-frequency con-
tent. Although the above modifications dramatically improved the learning capability of
DeepONet, it still lacks some accuracy above 700 Hz for larger and more complex geome-
tries. Increasing the number of layers and neurons did not improve the accuracy, indicating
that the network bottleneck is not the capacity but rather difficulties in the optimization
to find better optima. It is well-known that all neural networks have challenges when the
ratio between upper-frequency and domain size gets larger, which is addressed in the current
study by proposing a simple domain decomposition technique.

A spurious noise is observed in the impulse responses before the direct sound arrival, os-
cillating at the non-causal fundamental frequency. The network struggles to simultaneously
learn wave propagation and zero pressures due to the trigonometric feature expansion and
sine activation functions. This trade-off between aiding network learning with prior knowl-
edge and learning zero pressures can be managed since the non-zero pressures are small and
may not be audible in practical applications.

Training the 2D domain is efficient, taking less than 40 minutes, while training the 3D
domains requires between one and three days, mainly due to streaming data from disk.
This accounts for an overall 64× increase in time, with more than a 1,200× increase in data
loading time for the furnished geometry. The larger network and batch sizes in 3D contribute
to a 18× increase in training time, but the forward/backward propagation time scales better
than the cubic complexity of standard numerical methods. Transfer learning experiments
show a 3× speedup when fine-tuning the network parameters on scaled geometries for a
square and an L-shape domain. Still, limited improvements are seen when transferring to
a furnished domain. The results indicate that transfer learning frameworks could lead to
faster training, provided that the source and target models are similar enough for the target
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wave field to be learned efficiently.
The surrogate models exhibit efficient execution, with inference times below 49 ms for

the cubic, L-shape, and furnished rooms, meeting real-time requirements for audio-visual
applications. The dome’s inference time is slower, taking 132 ms due to the larger dimen-
sionality of the discretized source input functions. This could be addressed by sampling the
input function more accurately, ensuring no zero-samples are outside the geometry. How-
ever, if the learned model is intended to be used as a source model for transfer learning,
more sophisticated methods should be applied to relate spatial locations between models.
Also, using convolutional neural networks for the branch net could decrease the number of
network parameters.

To the authors’ knowledge, this is the first time a surrogate model with parameterized
source positions has been proposed for modeling wave propagation in 3D domains with
realistic frequency-independent and dependent boundaries capable of executing in real-time.
These findings are promising, with the potential to overcome current numerical methods’
limitations in modeling flexible scenes, such as moving sources. However, further research is
needed to address limitations related to larger rooms and better learning of high-frequency
content when numerous degrees of freedom are required for source positions. Perceptual
studies are also necessary to assess the tolerability of error levels for specific applications.

4. Governing equations

The acoustic wave equation for which a surrogate model is to be learned is given as

∂2p(x, t)

∂t2
− c2

∂2p(x, t)

∂x2
= 0, t ∈ R+, x ∈ R, (1)

where p is the pressure (Pa), t is the time (s) and c is the speed of sound in air (m/s). The
initial conditions (ICs) are satisfied by using a Gaussian impulse function (GIF) as sound
source for the pressure part and setting the velocity equal to zero as

p(x, t = 0, x0) = exp

[
−
(
x− x0
σ0

)2
]
,
∂p(x, t = 0, x0)

∂t
= 0, (2)

with σ0 being the width parameter of the pulse determining the frequencies to span (smaller
σ0 indicates a larger frequency span). The details concerning the boundary condition mod-
eling can be found in Appendix B.2.

4.1. Code setup

JAX 0.4.10 [24], Flax 0.6.10 [25] and Python 3.10.7 have been used for all experiments
and the code is available here: https://github.com/dtu-act/deeponet-acoustic-wave-prop.

4.1.1. Data

The physical speed of sound is cphys = 343 m/s, and air density is ρ0 = 1.2 kg/m3, where
the speed of sound has been normalized to c = 1 m/s to ensure the same resolution in
the spatial and temporal dimensions. This is crucial for the optimizer performing gradient
descent to find meaningful trajectories. The normalization of the speed of sound can be
done trivially by adjusting the time as t = tphys · cphys. Unless stated otherwise, the following
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will present the results and material parameters in the physical domain. The frequency-
independent boundaries are modeled with normalized impedance ξimp = 17.98, whereas
the frequency-dependent boundaries are modeled as a porous material mounted on a rigid
backing with thickness dmat = 0.03 m with an airflow resistivity of σmat = 10, 000 Nsm−4.
This material’s surface impedance Y is estimated using Miki’s model [26] and mapped to a
six-pole rational function in the form given in Equation B.6 using a vector fitting algorithm
[27] yielding the coefficients for the velocity term from Equation B.7.

The GIF to the branch network has been discretized at the Nyquist limit ppw = 2. Each
sample corresponds to a specific source position, and the number of samples (i.e., the source
density) needed for spanning the input space is calculated such that the average resolution
between source positions is well-resolved w.r.t. the upper frequency, i.e., ∆xsource density =

c
f · ppw .

The 3D data was generated using a DG-FEM solver [4], whereas the 2D data were gener-
ated using an SEM solver [3]. Ensuring good accuracy at interpolation locations is crucial for
the applications of interest. Therefore, the training data was generated with ppw = 6 using
six-order Jacobi polynomials for all cases except for the dome using fourth-order Jacobi poly-
nomials. The validation and testing data were generated with ppw = 5 using fourth-order Ja-
cobi polynomials. Hence, we ensure that the mesh points are mostly non-overlapping for the
datasets, likewise the Gauss-Lobatto nodes for each element. All simulations span frequen-
cies up to 1,000 Hz with an average grid resolution of ∆x5ppw = 0.069 m and ∆x6ppw = 0.057
m when using ppw = 5 and ppw = 6, respectively. Testing data was generated with five
source positions only.

The time step was ∆t = CFL ×∆x/c with the Courant-Friedrichs-Lewy constant set to
CFL = 1.0 and CFL = 0.2 for frequency-independent and dependent impedance boundaries,
respectively. The generated data sets were pruned in the temporal dimensions with ppw ∼ 2,
corresponding to a temporal resolution of 5e−4 s. Training the models on sparse temporal
data results in overfitting, which we exploit for faster training and smaller data sets since
interpolation in time is not useful for the applications of interest. The input function u(xi)
for the branch net was uniformly sampled at the Nyquist limit ppw = 2 in the bounding box
enclosing the geometry as depicted in the Figure B.10. This approach facilitates transfer
learning but has the disadvantage of unnecessarily large input sizes for non-rectangular
domains. The density of the source positions was determined by distributing the source
positions with one-fifth wavelength for the training data and roughly one full wavelength for
the validation data.

Before training, the spatial data has been normalized as a pre-processing step in the
range [−1, 1]. The temporal dimension is normalized with the spatial normalization factor
to ensure equal numerical resolutions in all dimensions of the temporal-spatial domain: e.g.,
if the spatial data is in the range ξ ∈ [−2, 2] m and the temporal data is in the range
t = [0, 10] s, then the normalization factor is 2, and the temporal data would be normalized
as tnorm = [0, 5] s. To summarize, the data set has been constructed as

Dj = {uj, ξi}Nfull
i=1 , for j = 1, 2 . . .Mfull, where

uj = {uj,i}mi=1, ξi = {xi, yi, zi, ti},
(3)

Nfull is the number of spatiotemporal samples andMfull is the number of (Gaussian) source
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functions uj. uj is sampled at m fixed sensor locations used as input to the branch net, and
ξ are the spatiotemporal samples used as input to the trunk net.

For training, a single mini-batch for each iteration is compiled by randomly sampling N
input sample functions {u(i)}Ni=1 for the branch net and randomly sampling Q coordinate
pairs {ξ(i) = (xi, yi, zi, ti)}Qi=1 ∈ RD for the trunk net for each input function. The details of
network architecture and mini-batches are provided in Appendix B.1.

4.1.2. DeepONet

The DeepONet architecture used in this work is depicted in Figure B.7. In the literature,
the DeepONet models have mostly been trained using Gaussian random fields (GRFs) as
input to the branch net. However, this work uses the GIF from Equation 2 with σ0 =

c
π·fmax/2

= 0.22 m spanning frequencies up to fphys = 1, 000 Hz and is used as a sound source

input (initial condition) to the branch net. Using GIFs as ICs drastically reduces the number
of samples needed for training compared to GRFs. Limiting the input space to Gaussian
functions has no practical limitations in room acoustics since the room impulse response
emitting from a GIF can be convolved with any band-limited signal to achieve the acoustical
room signal for a fixed frequency range.

The input to the trunk network is the location ξ where the operator is evaluated and
consists of the spatial and temporal coordinates x, y, z and t. To overcome the spectral bias
[28, 29], the temporal and spatial inputs are passed through a positional encoding mapping
as shown in Equation 4 to learn the high-frequency modes of the data, where the frequencies
fj = [500, 250, 167] Hz have been chosen relative to the fundamental frequency f0 = 1,000
Hz, resulting in 2×4×3 = 24 (sine and cos ⇒ 2, x, y, z, t⇒ 4, expansion terms ⇒ m = 3)
additional inputs to the trunk net.

γ(x) = [. . . , cos (2πfjx) , sin (2πfjx) , . . .]
T ,

for j = 0, . . . ,m− 1.
(4)

The modified MLP architecture described in Appendix B.1.2 was used for the branch and
trunk net. Self-adaptive weights were applied to all spatiotemporal locations optimized using
a separate ADAM optimizer. Gradient clipping with an absolute value of 0.1 was needed to
limit fluctuations that could sometimes make the optimizer jump to a drastically larger loss.

The weights of the networks are initialized [30] as wi ∼ U
(
−
√

6/n

k
,

√
6/n

k

)
, where n denotes

the number of input neurons to the i’th neuron and k was empirically chosen as k = 30 for
all layers except for k = 1 used at the first layer. The first layer is initialized with weights
such that the sine functions sin(w0 · Wx + b) spans multiple periods, where the angular
frequency w0 = 30 was empirically found to give the best results.

4.1.3. Domain decomposition

When the frequency range is increased or, correspondingly, the domain size is increased,
the accuracy of the deep neural network will decrease for a fixed network size. Increasing the
network size in terms of layers and neurons should theoretically be sufficient to regain the
required accuracy; however, this is often not the case. This is well-known in the literature
and applies to, but is not limited to, both DeepONet and PINNs. Domain decomposition
approaches, such as XPINNs [31] applied for PINNs, have been shown to overcome these
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limitations, but with the expense of more neural networks to train. The general idea is to
split the domain into (non-overlapping) partitions, each running separate neural networks
and adding an additional loss term at the interface, imposing continuity conditions. In this
work, training the DeepONet is purely data-driven, and a simpler approach has been taken.
We divide the full domain Ω ∈ R3 into four non-overlapping partitions Ω = Ω1∪Ω2∪Ω3∪Ω4,
where {x(k)i , y

(k)
i , z

(k)
i }Nk

i=1 ∈ Ωk, k = 1 . . . 4 and N =
∑4

k=1Ni, Ni ∈ Z+. We then train four
DeepONets NN k, each on the full source function space u, but restrict the location where
we evaluate the operator at one of the partitions Ωi. The temporal samples are kept (could
also be partitioned if needed), which gives us the data set D for training a DeepONet NN k

for a k’th partition

D(k)
j = {uj, ξ

(k)
i }Nk

i=1, for j = 1, 2 . . . N, where

ξ
(k)
i = {x(k)i , y

(k)
i , z

(k)
i , ti}.

(5)

This work does not enforce continuity at the interfaces but could be done by calculating the
mean of overlapping domains near the interfaces.

4.1.4. Self-adaptive weights

Weighting individual samples in the loss function can be advantageous for the DeepONet
to perform better. Using point-wise weights, the loss function can be minimized w.r.t.
the network parameters but maximized w.r.t. the point-wise loss weights. This approach,
called self-adaptive weights, was originally introduced to improve the performance for PINNs
[32] and later extended to DeepONet [33]. The self-adaptive weights are applied to all
spatiotemporal samples and initialized to 1. To ensure stability in case some sample points
are not converging, the weights have been clamped to take values between 0 and 1,000. A
separate ADAM optimizer was used for updating the self-adaptive weights with a learning
rate two orders of magnitude lower than the learning rate for the network parameters.

4.1.5. Transfer learning

Training DeepONet surrogate models for every geometry might get intractable for real-
world usage due to the time and resources needed to train realistic 3D geometries. A more
tractable strategy that could be applied for real-world problems is to pre-train DeepONets for
geometries with certain traits (e.g., cubic rooms, L-shaped rooms, penta shapes, furnished
rooms, etc.) and fine-tune the training on specific target room geometry by transferring
the weight from a pre-trained DeepONet corresponding to the closest-matching geometry.
We have made an investigation in 2D by performing transfer learning between rectangular,
L-shape, and furnished geometries of varying sizes. First, the source models are trained
using a network with two hidden layers of width 2,048 for both the branch and the trunk
net using mini-batching of N = 64 and Q = {200, 600}. Then, the optimized network
parameters are used to initialize the target model, a subset of the layers are frozen, and
the new model is fine-tuned on data corresponding to the new geometry with N = 64 and
Q = {200, 600} on the full training set or a subset using only 60% of the Gaussian input
functions (i.e., source positions). When freezing layers, the optimizer will skip updating the
corresponding weights and biases for these. By sampling the Gaussian input function on
an enclosing rectangle, the mapping from the target model’s source positions to the source
model’s closest corresponding source positions can be done straightforwardly as shown in
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the Figure B.10. It is also important to ensure that the spatial locations between the source
and target model are as closely related as possible. For all the cases, the spatial alignment
between source and receiver is done at the coordinate [0, 0] m. The first hidden layer is
frozen in the trunk net, leaving the second (non-linear) hidden layer and the linear output
layer trainable. In contrast, only the linear output layer is trainable in the branch net. From
the experiments, the trunk net learning the basis function is more important to fine-tuning
the new geometry than the basis function coefficients learned by the branch net.
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Appendix A. Parameterized PDEs in acoustics

The challenge of utilizing parametric PDEs has motivated increased research. Reduced
order methods [34, 35] aim to reduce the degrees of freedom; however, despite achieving
orders of magnitude in accelerations for many applications, these techniques still cannot
meet the runtime requirement for real-time experiences for sound propagation in realistic
3D schenes. Recently, the possibility of generating surrogate models with little data was
demonstrated using physics-informed neural networks [36] and applied for acoustics problems
in [8]. Previous attempts to overcome the storage requirements of the IR include work for
lossy compression [20]. Lately, a novel portal search method has been proposed as a drop-in
solution to pre-computed IRs to adapt to flexible scenes, e.g., when doors and windows are
opened and closed [37].

Appendix B. Methods

Appendix B.1. Neural operators

Let Ω ⊂ RD be a bounded open set and U = U(Ω;Rdx) and Y = Y(Ω;Rdy) two separable
Banach spaces. Furthermore, assume that G : U → Y is a non-linear map arising from the
solution of a time-dependent PDE. The objective is to approximate the nonlinear operator
via the following parametric mapping

G : U ×Θ → Y or, Gθ : U → Y , θ ∈ Θ (B.1)

where Θ is a finite-dimensional parameter space. The optimal parameters θ∗ are learned
via the training of a neural operator with backpropagation based on a dataset {uj,yj}Nj=1

generated on a discretized domain Ωm = {x1, . . . , xm} ⊂ Ω where {xj}mj=1 represent the
sensor locations, thus uj|Ωm ∈ RDx and yj|Ωm ∈ RDy where Dx = dx ×m and Dy = dy ×m.

Appendix B.1.1. The deep operator network (DeepONet)

DeepONet [10] aims to learn operators between infinite-dimensional Banach spaces. Learn-
ing is performed in a general setting in the sense that the sensor locations {xi}mi=1 at
which the input functions are evaluated need not be equispaced; however, they need to
be consistent across all input function evaluations. Instead of blindly concatenating the
input data (input functions [u(x1),u(x2), . . . ,u(xm)]

T and locations ζ) as one input, i.e.,
[u(x1),u(x2), . . . ,u(xm), ζ]

T , DeepONet employs two subnetworks and treats the two in-
puts equally. Thus, DeepONet can be applied for high-dimensional problems where the
dimension of u(ui) and ζ no longer match since the latter is a vector of d components in
total. A trunk network f(·), takes as input ζ and outputs [tr1, tr2, . . . , trp]

T ∈ Rp while a
second network, the branch net g(·), takes as input [u(x1),u(x2), . . . ,u(xm)]T and outputs
[b1, b2, . . . , bp]

T ∈ Rp. Both subnetwork outputs are merged through a dot product to gener-
ate the quantity of interest. A bias b0 ∈ R is added in the last stage to increase expressivity,
i.e., G(u)(ζ) ≈

∑p
i=k bktk + b0. The generalized universal approximation theorem for opera-

tors, inspired by the original theorem introduced by [9], is presented below. The generalized
theorem essentially replaces shallow networks used for the branch and trunk net in the orig-
inal work with deep neural networks to gain expressivity. An overview of the architecture
used in this work is depicted in Figure B.7.
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Theorem 1 (Generalized Universal Approximation Theorem for Operators.). Suppose that
X is a Banach space, K1 ⊂ X, K2 ⊂ Rd are two compact sets in X and Rd, respectively,
V is a compact set in C(K1). Assume that: G : V → C(K2) is a nonlinear continuous
operator. Then, for any ϵ > 0, there exist positive integers m, p, continuous vector functions
g : Rm → Rp, f : Rd → Rp, and x1, x2, . . . , xm ∈ K1 such that∣∣∣∣∣G(u)(ζ)− ⟨g(u(x1),u(x2), . . . ,x(xm))︸ ︷︷ ︸

branch

, f(ζ)︸︷︷︸
trunk

⟩

∣∣∣∣∣ < ϵ

holds for all u ∈ V and ζ ∈ K2, where ⟨·, ·⟩ denotes the dot product in Rp. For the two
functions g, f classical deep neural network models and architectures can be chosen that
satisfy the universal approximation theorems of functions, such as fully-connected networks
or convolutional neural networks.

The method accurately learns the mapping from an input space of functions into a space
of output functions, thereby generalizing the solution for a parametrized PDE. DeepONet
provides a simple architecture that is fast to train, utilizing data from high-fidelity simu-
lations describing sound propagation, and allows for continuous target outputs predicting
source/receiver pairs in a grid-less domain almost instantly.

The Fourier neural operator [38], Wavelet neural operator [39], and the Laplace neural
operator [40] are a separate class of neural operator where the solution operator is expressed
as an integral operator of Green’s function that is parameterized in the Fourier, Wavelet,
and Laplace space, respectively. All these versions are different realizations of DeepONet if
appropriate changes are imposed on its architecture. Approximating operators is a paradigm
shift from current and established machine learning techniques focusing on function approx-
imation to the solution of the PDEs.

Appendix B.1.2. DeepONet architecture

The DeepONet framework allows many network architectures, such as feed-forward neural
networks (FNN), multi-layer perception (MLP), recurrent neural networks (RNN), convo-
lutional neural networks (CNN), graph neural networks (GNN), and convolutional graph
neural networks (CGNN). In this work, we have used a modification to the MLP (mod-
MLP) for both the branch and trunk net originally proposed in [41] for PINNs and in [42]
for DeepONets shown to outperform the conventional FNNs. First, let us define a standard
FNN consisting of an input layer x, n hidden layers, and an output layer. The mapping
from an input x to an output y is defined as

y = (f0 ◦ f1 ◦ . . . ◦ fn)(x),
fi(x) = σi(W

ix+ bi).
(B.2)

σi(x) is a non-linear activation function (except for a linear activation in the last layer),
where Wi and bi are the weight and bias parameters to learn. An MLP is a special case
of an FNN, where every layer is fully connected, and the number of nodes in each layer is
the same. The key extension is the introduction of two encoder networks encoding the input
variables to a higher-dimensional feature space. The networks consisting of a single layer are
shared between all layers, and a pointwise multiplication operation is performed to update
the hidden layers. Let the two shallow encoder networks with width size equal to the hidden
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layers be denoted u(x) and v(x) and defined as a simple perceptron

u(x) = σ(Wux+ bu),

v(x) = σ(Wvx+ bv),
(B.3)

then the mod-MLP is defined as

y = ((1− f0)⊙ u+ f0 ⊙ v) ◦
((1− f1)⊙ u+ f1 ⊙ v) ◦

...

((1− fn)⊙ u+ fn ⊙ v)(x),

(B.4)

where ⊙ denotes elementwise multiplication, ◦ is the function composition operator, and
W{u,v} and b{u,v} are the weights and biases for the two encoder networks. The architecture
is depicted in Figure B.8, where the encoder networks are applied separately for the branch
and trunk net. This implementation differs from the implementation in [43], where only
two encoder networks are shared between the branch and trunk layer. The motivation
behind the mod-MLP is to better propagate information stably through the network since the
trainability of the DeepONet depends on merging the branch and trunk net in terms of their
inner product only in the last layer. Hence, if the input signals are not properly propagated
through the network, this may lead to ineffective training and poor model performance.

Appendix B.1.3. DeepONet setup

Five hidden layers with 2,048 neurons each were used for the branch and trunk net in 3D;
two hidden layers with 2,048 neurons each were used for the branch and trunk net in 2D.
The ADAM optimizer and the mean-squared error for calculating the losses were used with a
learning rate of 1e−3 and exponential decay of 0.90 per 2,000 iterations for all experiments.
Self-adaptive weights were applied to all spatiotemporal locations using a separate ADAM
optimizer with a learning rate two orders of magnitude smaller than the learning rate of the
optimizer used for the network parameters. All experiments used mini-batches of N = 64,
Q = 1,000, except for the dome, where mini-batches of N = 96, Q = 1,500 were used. For
the transfer learning in 2D, N = 64 and Q = {200, 600} were used for training the reference
and target models. Note, that the data set batch dimensions u, ξ, G(u)(ξ) are (N ×Q,m),
(N ×Q,D), (N ×Q, 1), respectively.

Appendix B.2. Impedance boundaries

We consider impedance boundaries and denote the boundary domain as Γ. We will omit
the source position x0 in the following. For frequency-independent impedance boundaries,
the acoustic properties of a wall can be described by its surface impedance Zs = p

vn
[18]

where vn is the normal component of the velocity at the same location on the wall surface.
Combining the surface impedance with the pressure term ∂p

∂n
= −ρ0 ∂vn∂t

of the linear coupled
wave equation yields

∂p

∂t
= −cξimp

∂p

∂n
, for Ω and t ≥ 0, (B.5)

where ξimp = Zs/(ρ0c) is the normalized surface impedance and ρ0 denotes the air density
(kg/m3). Note that perfectly reflecting boundaries can be obtained by letting ξimp → ∞ be
the Neumann boundary formulation.
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Source function Location
Count Sensors Time steps Mesh points Total per source

T - Cubic 2,826 28 101 57,124 5.8M
V - Cubic 100 28 101 17,643 1.8M

T - L-shape 5,165 3,888 101 93,675 9.5M
V - L-shape 180 3,888 101 51,201 5.2M

T - Furn. 4,799 3,888 101 123,994 12.5M
V - Furn. 203 3,888 101 74,819 7.6M

T - Dome 1,849 19,602 101 213,130 21.5M
V - Dome 94 19,602 101 165,025 16.7M*

T - Dome 1/4 1,849 19,602 101 51, 665 5.2M
V - Dome 1/4 94 19,602 101 40, 240 4.1M*

Table B.1: Data sizes for the four geometries. The data has been saved in 16-bit floating point precision. The
dome 1/4 arises from being spatially partitioned into four partitions, subsequently evaluated at one partition
only. ‘T’ denotes training data, ‘V’ denotes validation data. *Note that the mesh point ratio between
training and validation data differs for the dome compared to the other geometries. This is caused by the
meshing algorithm forcing finer resolutions in regions near the sphere to capture the complex geometry.

For frequency-dependent impedance boundaries, the wall impedance can be written as a
rational function in terms of the admittance Y = 1/Zs and rewritten by using partial fraction
decomposition in the last equation [44]

Y (ω) =
a0 + . . .+ aN(−iω)N

1 + . . .+ bN(−iω)N

= Y∞ +

Q−1∑
k=0

Ak

λk − iω
+

S−1∑
k=0

(
Bk + iCk

αk + iβk − iω
+

Bk − iCk

αk − iβk − iω

)
,

(B.6)

where a, b are real coefficients, i =
√
−1 being the complex number, Q is the number of

real poles λk, S is the number of complex conjugate pole pairs αk ± jβk, and Y∞, Ak, Bk

and Ck are numerical coefficients. Since we are concerned with the (time-domain) wave
equation, the inverse Fourier transform is applied to the admittance and the partial fraction
decomposition term in Equation B.6. Combining these gives [44]

vn(t) = Y∞p(t) +

Q−1∑
k=0

Akϕk(t) +
S−1∑
k=0

2
[
Bkψ

(0)
k (t) + Ckψ

(1)
k (t)

]
. (B.7)

The functions ϕk, ψ
(0)
k , and ψ

(1)
k are the so-called accumulators determined by the following

set of ordinary differential equations (ODEs) referred to as auxiliary differential equations
(ADEs)

dϕk

dt
+ λkϕk = p,

dψ
(0)
k

dt
+ αkψ

(0)
k + βkψ

(1)
k = p,

dψ
(1)
k

dt
+ αkψ

(1)
k − βkψ

(0)
k = 0. (B.8)

The boundary conditions can then be formulated by inserting the velocity vn calculated in
Equation B.7 into the pressure term of the linear coupled wave equation ∂p

∂n
= −ρ0 ∂vn∂t

.
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Figure B.7: DeepONet architecture with parameterized source position for predicting the impulse response
for a source/receiver pair over time for a 3D domain. The branch net is taking as input a Gaussian source
function u determining the source position, sampled at fixed sensor locations. The spatial coordinates x,
y, z, and temporal coordinate t are denoted by ξ and are used as input to the trunk net mapping into the
output domain of the operator.

Hidden layer Hidden layer Hidden layer Linear layer

Hidden layer Hidden layer Hidden layer Linear layer

{U,V} Encoders

{U,V} Encoders

Branch Net

Trunk Net

Figure B.8: The modified MLP architecture applied for the DeepONet. Two encoders u and v implemented
as single-layer neural networks are applied for each MLP, embedding the inputs into a latent space with
the size of the layer width of the MLP. The embedded features are then inserted into each hidden layer
illustrated by ‘*’ performing the operation (1− fi)⊙ u+ fi ⊙ v.
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s1 s2 s3 s4 s5 Mean
Domain RMSE RMSE RMSE RMSE RMSE RMSE

Cubic 0.03 Pa 0.03 Pa 0.02 Pa 0.04 Pa 0.03 Pa 0.03 Pa
L-shape 0.06 Pa 0.04 Pa 0.05 Pa 0.04 Pa 0.04 Pa 0.05 Pa
Furnished 0.09 Pa 0.09 Pa 0.09 Pa 0.08 Pa 0.08 Pa 0.09 Pa
Dome 0.08 Pa 0.05 Pa 0.08 Pa 0.10 Pa 0.10 Pa 0.08 Pa

Dome 1/4 0.03 Pa 0.02 Pa 0.04 Pa 0.04 Pa 0.04 Pa 0.03 Pa

Table B.2: Impulse receiver errors for source/receiver pairs si given in the text. The root mean square error

(RMSE) is used to access the errors, defined as RMSE =

√∑N
n=1(prefi

−ppredi
)2

N .

Layer inputs outputs param. size

C
u
b
ic

B
ra
n
ch

n
et

U,V 1,728 2,048 2× 3.5M 2× 14 MB
Hidden layer (in) 1,728 2,048 3.5M 14 MB
Hidden layers 2,048 2,048 4× 4.2M 4× 17 MB
Output layer 2,048 100 204k 820 KB

Total - - 27.6M 111 MB

F
u
rn
is
h
ed

B
ra
n
ch

n
et

U,V 3,888 2,048 2× 8M 2× 32 MB
Hidden layer (in) 3,888 2,048 8M 32 MB
Hidden layers 2,048 2,048 4× 4M 4× 17 MB
Output layer 2,048 100 204k 820 KB

Total - - 40.9M 164 MB

L
-s
h
ap

e

B
ra
n
ch

n
et

U,V 3,888 2,048 2× 8M 2× 32 MB
Hidden layer (in) 3,888 2,048 8M 32 MB
Hidden layers 2,048 2,048 4× 4M 4× 17 MB
Output layer 2,048 100 204k 820 KB

Total - - 40.9M 164 MB

D
om

e

B
ra
n
ch

n
et

U,V 19,602 2,048 2× 40.1M 2×161MB
Hidden layer (in) 19,602 2,048 40.1M 161 MB
Hidden layers 2,048 2,048 4× 4.2M 4× 17 MB
Output layer 2,048 100 204k 820 KB

Total - - 137M 549 MB

[a
ll
]

T
ru
n
k
n
et

U,V 28 2,048 2× 59k 2× 238k
Hidden layer (in) 28 2,048 59k 238k
Hidden layers 2,048 2,048 4× 4M 4× 17 MB
Output layer 2,048 100 204k 820 KB

Total - - 17M 69 MB

Table B.3: Branch and trunk network parameters for the cubic, L-shape, furnished, and dome geometries.
The input function to the branch net has been uniformly sampled on the enclosed bounding box for the
geometries; why the input size is the same for the L-shape and furnished rooms both having outer dimension
3m× 3m× 2m. The trunk net is the same for all geometries.
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Timings Data size

per iter loading back-prop per iter

2D Furn. 32.7 ms 1.3 ms/3.8% 31.4 ms/96.2% 0.024 MB
3D Furn. 2.1 s 1.6 s/73% 564 ms/27% 1.5 GB

Factor 3D/2D 64× 1230× 18× 62,500×

Table B.4: Training time divided into data loading and weight/bias updates through forward/back-
propagation. The timings are given per iteration step for the furnished room in 2D and 3D. The 2D network
has two layers of width 2,048 for the BN and TN with batch size 64 × 200 = 12,800, and all data fits into
memory for fast access and efficient sampling. The 3D network has five layers of width 2,048 for the BN and
TN with batch size 64× 1,000 = 64,000. The data is stored in HDF5 format in separate files for each source
position. Therefore, the source position can be sampled randomly by loading a subset of the HDF5 files. In
contrast, the temporal/spatial data cannot efficiently be accessed randomly on disk. Therefore all data for
each file are loaded in memory, taking up 64× 101× 123,994 16-bit samples (source sample × temporal dim.
× spatial dim).

Figure B.9: Convergence plot showing the training and validation loss for the cubic, L-shape, furnished, and
dome geometries.
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Figure B.10: The input function u is uniformly sampled at N fixed locations xi for i = 1, 2, . . . , N on
a bounding box enclosing the geometry. The dots represent the discretization xi. Sampling the input
function this way facilitates transfer learning, where similar pressure values between domains are kept fixed.
(a) Initial condition grid, flattened for input to the branch net as u = [x0, x1, . . . , x35], where the ghost
nodes are set to zero pressures [xi = 0|i ∈ {3, 4, 5, 9, 10, 11, 15, 16, 17}], b) Modified initial condition grid
preserving the ordering by keeping the source grid and setting the new ghost nodes to zero [xi = 0|i ∈
{0, . . . , 5, 9, . . . , 11, 15, . . . , 17, 23, 29, 35}].
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ABSTRACT

Deep neural operators have seen much attention in the
scientific machine learning community over the last cou-
ple of years due to their capability of efficiently learn-
ing the nonlinear operators mapping from input function
spaces to output function spaces showing good generaliza-
tion properties. This work will show how to set up a per-
formant DeepONet architecture in acoustics for predict-
ing 2-D sound fields with parameterized moving sources
for real-time applications. A sensitivity analysis is car-
ried out with a focus on the choice of network archi-
tectures, activation functions, Fourier feature expansions,
and data fidelity to gain insight into how to tune these
models. Specifically, a default feed-forward neural net-
work (FNN), a modified FNN, and a convolutional neural
network will be compared. This work will de-mystify the
DeepONet and provide helpful knowledge from an acous-
tical point of view.

Keywords: neural operators, sensitivity analysis, virtual
acoustics, DeepONet

1. INTRODUCTION

Deep learning has seen rapid development over the last
20 years, with a many-fold of applications such as image
classification and computer vision, speech recognition,
language translation, autonomous driving, bioinformatics,

*Corresponding author: nibor@dtu.dk.
Copyright: ©2023 Nikolas Borrel-Jensen et al. This is an open-
access article distributed under the terms of the Creative Com-
mons Attribution 3.0 Unported License, which permits unre-
stricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

chatbots, and more. More recently, scientific machine-
learning (SciML) methods have been proposed in the con-
text of deep learning. Physics-informed neural networks
were introduced in 2017 [1] inspired by [2] and have al-
ready seen many applications [3, 4]. Typical for most of
these techniques is that they are based on the assump-
tion of function approximations of neural networks [5]. In
2019, the DeepONet was introduced [6], extending a the-
orem on the universal operator approximation for a single-
layer neural network [7] to hold for deep neural networks.
Moreover, the original architecture was improved to ex-
hibit small generalization errors. Unlike function regres-
sion, operator regression aims to learn the mapping from
one function space (inputs) to another function space (out-
put), where the learned operator can be evaluated at arbi-
trary (continuous) locations. Another work on operator
learning is the Fourier Neural Operator (FNO) introduced
in 2021 [8], based on parameterizing an integral kernel
directly in the Fourier space.

In this work, we will apply the DeepONet to ap-
proximate the wave equation operator for frequency-
independent boundary conditions and parameterized
source positions similar to [4] in 2-D for virtual acous-
tics applications such as computer games, AR/VR, and
metaverses. The impulse response (IR) has traditionally
been calculated using numerical methods. However, when
handling moving sources, this approach gets challenging
both from a computational and storage point of view since
the IRs have to be re-calculated offline for each source
position and the IRs stored for each source/receiver pair.
This gets intractable when approaching the full frequency
range.

It is vital to apply various techniques and fine-tune
the hyperparameters for the DeepONet to exhibit fast
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convergence with low generalization errors. This work
aims to perform a sensitivity w.r.t. the network architec-
ture, data resolution, batch size, activation functions, and
Fourier feature expansion techniques to better understand
the workings of the DeepONet when applied in an acous-
tical context.

2. METHODS

2.1 Deep operator network (DeepONet)

DeepONet [6] is a general deep learning framework for
approximating continuous operators contrary to continu-
ous functions. The underlying theory stems from the uni-
versal operator approximation theorem [7], stating that a
neural network (NN) with a single hidden layer of infinite
width can approximate any nonlinear continuous func-
tional or operator. Let G be the operator we want to
learn using NNs, defined as G : u 7→ G(u), where u is
the input function to G and G(u) is the output function.
For any point, y in the domain of G(u), G(u)(y) ∈ R
is producing a real number. Translating this into a NN
setting, the network takes two inputs, u and y, and out-
puts G(u)(y). The input function is discretized by eval-
uating u at a finite number of points {xi} called ‘sen-
sors.’ The approximation theorem by Chen and Chen
considers shallow networks and only guarantees small ap-
proximation errors but does not consider generalization
and optimization errors. In [6], the authors extended the
original theorem by proposing deep neural networks in-
stead of shallow networks and proved that the network
is also universal approximators for operators. The pro-
posed deep operator network, DeepONet, achieves small
total errors, including approximation, optimization, and
generalization errors. The DeepONet architecture con-
sists of two subnetworks, the ‘branch net’ for the input
functions and the ‘trunk net’ for the locations to evalu-
ate the output function G(u). The trunk network takes y
as input and outputs [T1, T2, . . . , Tp] ∈ Rp; the branch
network takes [u(x1), u(x2), . . . , u(xm)]T at fixed sen-
sors {x1, x2, . . . , xm} and outputs a scalar Bk ∈ R for
k = 1, 2, . . . , p. By merging the trunk and branch in terms
of their inner product, we get

G(u)(y) ≈
p∑

k=1

Bk (u(x1), u(x2), . . . , u(xm))︸ ︷︷ ︸
branch

Tk(y)︸ ︷︷ ︸
trunk

+b0,

(1)
where b0 is a trainable bias.

2.2 Network architectures

The DeepONet framework allows many network architec-
tures, such as feed-forward neural networks (FNN), re-
current neural networks (RNN), convolutional neural net-
works (CNN), graph neural networks (GNN), and convo-
lutional graph neural networks (CGNN). Since the inputs
to the trunk net are the (continuous) locations on which the
operator’s output is evaluated, the dimensionality is typi-
cally low. In contrast, the input to the branch net is a func-
tion sampled at m sensor locations and is typically high-
dimensional. A common choice for the trunk network is
to use an FNN, whereas FNNs and CNNs have been the
most common architectures for the branch net. The lat-
ter choice is because of the high-dimensional nature of
the input functions, making the CNNs particularly useful
in many applications due to their ability to map higher-
dimensional spaces to lower-dimensional spaces by ex-
tracting the essential features.

In this work, we compare the performance between
using a CNN and an FNN network for the branch net of the
DeepONet, while keeping the trunk net FNN architecture
fixed.

2.2.1 Feed-Forward Neural Network

An FNN consists of an input layer x, n hidden layers, and
an output layer and maps an input x to an output y as

y = (f0 ◦ f1 ◦ . . . ◦ fn)(x), (2a)

fi(x) = σi(W
ix+ bi), (2b)

where σi(x) is a non-linear activation function, except for
the last layer, where we are applying the identity map-
ping σn(x) = x. The weights Wi and biases bi are the
parameters to learn. A multilayer perceptron (MLP) is a
special case of an FNN, where every layer is fully con-
nected, and the number of nodes in each layer is the same.
In this work, we have used the gradient descent optimizer
ADAM.

A modification to the MLP (mod-MLP) was proposed
in [9] and has been shown to outperform the conventional
FNNs also in conjunction with DeepONet [10]. The key
extension is the introduction of two encoder networks en-
coding the input variables to a higher-dimensional feature
space. The networks consisting of a single layer are shared
between all layers, and a pointwise multiplication opera-
tion is performed to update the hidden layers. Let the two
transformer networks be denoted u(x) and v(x) and de-
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fined as a simple perceptron

u(x) = σ(Wux+ bu), (3a)
v(x) = σ(Wvx+ bv), (3b)

then the mod-MLP is defined as
y = ((1− f0)⊙ u+ f0 ⊙ v) ◦

((1− f1)⊙ u+ f1 ⊙ v) ◦
...

((1− fn)⊙ u+ fn ⊙ v)(x),

(4)

where ⊙ denotes elementwise multiplication, and W{u,v}
and b{u,v} are the weights and biases for the two trans-
former networks.

2.2.2 Convolutional Neural Network

Convolutional neural networks (CNN) are special net-
works for processing data with a grid-like topology [11]
and use convolution instead of matrix multiplication in
one or more layers. In traditional MLPs, each output unit
interacts with each input unit through weight parameters
describing the interaction. In contrast, CNNs typically
have sparse interactions by applying a convolution ker-
nel (much) smaller than the input dimension. Moreover,
the convolutional kernel is used for every input position,
meaning the parameters are shared. Aside from reducing
the storage requirement, it also causes the layer to have
equivalence to translation.

Although the networks in our work are not partic-
ularly deep, we will use the ResNet architecture [12].
Several ResNet blocks assemble the ResNet. A ResNet
block consists of two stacked CNNs with skip connec-
tions and batch normalization; one or more ResNet blocks
comprise a group (all with the same output shape), and
one or more groups connect the final ResNet. Down-
sampling takes place in the first block of each group
by increasing the strides, and the output channel dimen-
sion is increased, forcing the CNN to capture essential
features in separate channels. We will use the notation
ResNet-{gr1,gr2,gr3,...}, where the element counts inside
the square brackets denote the number of groups, and
the values denote the number of blocks inside the group
indexed by its position. The hidden channel layers are
denoted {ch1,ch2,ch3,ch4,...}, where each element index
corresponds to the ResNet group with the same index.
E.g., when we refer to a ResNet-{2,2,2,2} with hidden
channel layers {8,16,32,64}, it denotes a ResNet having 4
groups of 2 blocks each with 8, 16, 32, and 64 channels
for each of the groups, respectively.

2.3 Activation functions

We will compare the convergence using the Rectified Lin-
ear Unit (relu) x̂ 7→ x̂+, the hyperbolic tangent (tanh)
x̂ 7→ (ex̂ − e−̂x)/(ex̂ + e−̂x) and sinusoidal (sine)
x̂ 7→ sin(x). The latter is a less common choice but has
shown superior convergence for wave propagation prob-
lems [4]. Weight initialization is a significant step before
training the model and depends on the activation func-
tion used. Glorot initialization [13] is used for relu and
tanh, whereas the initialization advised in [14] is used
for the sine activations. Data normalization is done in
the spatial dimensions ([−1, 1] for sine and tanh and
[0, 1] for relu), where the temporal dimension is normal-
ized with the spatial normalization factor to ensure equal
resolutions in all dimensions.

2.4 Loss functions

The mean-squared error (MSE) will be used in all experi-
ments and is the default loss for function regression under
the inference framework of maximum likelihood when the
target variable is assumed Gaussian

MSE = ||ŷ − y||2. (5)

The MSE will punish large values more and is a good
choice when outliers are less pronounced, which is sat-
isfied for our synthetic training data.

2.5 Data resolution

Deep learning methods typically require large data sets
for proper training, which also applies when training the
DeepONet. Since the training data for our simulations are
created synthetically from high-fidelity spectral-element
method (SEM) simulations [15], we can, in principle,
create any training data sample set utilizing a simulator.
However, it is crucial to find a lower bound since gen-
erating data quickly gets intractable when enlarging the
domain and/or simulating a broader frequency range – es-
pecially when going higher dimensions due to the curse
of dimensionality. More extensive training data sets also
impact the training time and hardware requirement. Also,
training a deep neural network on an unnecessary fine-
grained data set is not always advantageous, as we will
see.

We can estimate a theoretical lower bound of the
sampling rate of the discretized wave-propagation data
from the Nyquist Theorem, stating that a given band-
limited continuous-time signal can be perfectly recon-
structed from its discrete-time signal by ensuring that the
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continuous signal is sampled using at least two points per
wavelength. The number of spatial points for one dimen-
sion is calculated as

Nsamples =

⌈
L

c/(fmax × ppw)

⌉
, (6)

where ppw is the number of points per wavelength, and
L is the dimension length. Though the sufficient Nyquist
sampling rate can be used in theory, the sampling rate for
the DeepONet to generalize well and the optimizer to find
meaningful optima might require oversampling. The data
and the corresponding resolutions for the DeepONet can
be divided into several parts with eventually different res-
olution requirements.

Firstly, we consider the resolution of the sample func-
tions representing the initial conditions used as input to
the branch net. Remember that the sensors (the sampling
points for each sample function) must be located at equal
locations across all the sample functions. Therefore, we
cannot exploit any sensor location distribution favoring
important samples (e.g., non-zero Gaussian sensors) be-
cause the source should be allowed to move freely inside
the domain, hence a uniform sensor distribution is the best
option. We will investigate the sensitivity from the total
number of sensors m in (1) calculated using (6).

Secondly, the spatial/temporal coordinate inputs to
the trunk net are considered. Contrary to the sample func-
tions, there are no restrictions on choosing the coordi-
nate distributions for different samples, which enables us
to learn the continuous operators of the solution. Vari-
ous sampling techniques have been explored chiefly for
physics-informed neural networks [16]. However, when a
training data set with a given distribution has to be manip-
ulated, weighting and re-distributing important points to
where the physics is most important (e.g., when the gra-
dient is relatively large or when the field is non-zero) be-
comes more involved and could require substantial com-
putational efforts for realistic time-dependent problems in
complex domains. In this work, we will keep the data dis-
tribution determined by the Gauss-Lobotto nodes from the
fourth-order Lagrange polynomials on a non-uniform grid
used in our SEM solver [15] and instead randomly sample
data points corresponding to different grid resolutions for
building up the training and validation data sets.

Thirdly, we will investigate the impact of the relative
resolution between the temporal and spatial dimensions.
From numerical theory, the relation between the tempo-
ral resolution ∆t and the spatial resolution ∆x is given
by ∆t = λ∆x

c ensuring that the distance the wave has

traveled after one time step ∆t × c is no longer than the
spatial resolution ∆x required to resolve the wave prop-
agation. In numerical theory, 0 < λ ≤ 1 is the so-
called Courant-Friedrichs-Lewy stability condition (CFL)
that dictates numerical stability for explicit time-stepping
schemes and should be set such that the chosen method is
numerically stable. There is no such restriction in deep
neural networks as training these relies on global opti-
mization across the parameter domain, and the CFL can be
set to the maximum value. In fact, the temporal and spa-
tial resolutions can be set independently as long as the fre-
quencies are well resolved according to the Nyquist The-
orem. Hence, the temporal and spatial resolutions can be
chosen freely as

∆x =
c

fmax × ppwx

(7a)

∆t =
1

fmax × ppwt

, (7b)

with ppw ≥ 2. For the gradient descent to find meaningful
optima, the speed of sound c = 1 m/s is used to ensure
equal resolutions for all dimensions.

Lastly, the initial source sample density can be de-
termined using (6). The Nyquist Theorem would tell us
the minimum distance between source positions to recon-
struct the signal as the source moves freely. However, a
finer resolution might be needed for the network not to
overfit, as we will investigate in the ‘Experiments’ sec-
tion.

2.6 Fourier feature expansions

It is well-known that deep neural networks first learn
the lower frequency modes of the data and suffer from
learning the higher frequency modes. This phenomenon
is known as spectral bias [17, 18]. This problem can, to
some extent, be overcome by passing the temporal and
spatial coordinates through a Fourier feature mapping
that enables a deep FNN to learn the high-frequency
modes of the data. In this work, we will experiment with
the ‘Positional encoding mapping’ and the ‘Gaussian
mapping’ from [19]. A third ‘ES mapping’ has been
constructed from an analytical solution. In the following,
m is the number of feature expansion terms, and d is the
dimension of the input data:

Positional encoding mapping:

γ(x) = [. . . , cos (2πfjx) , sin (2πfjx) , . . .]
T
,

for j = 0, . . . ,m− 1.
(8)
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The frequencies fj can be log-linear spaced along each
dimension or arbitrarily relative to the fundamental
frequency f0 ∈ R+.

Gaussian mapping:

γ(x) = [cos(2πBx), sin(2πBx)]
T , (9)

where each entry in B ∈ Rm×d is sampled from N (0, f2
0 )

and f0 ∈ R+ is a fundamental frequency empirically
chosen.

ES mapping:

γ(x, y, t) =

[
. . . , cos(Ωt) cos

(
πnj

Lx
x

)
cos

(
πnj

Ly
y

)
×

cos

(
πnj

Ly
y

)
, . . .

]T
, for j = 0, . . . ,m− 1,

(10)

where ni ∈ Z are the wave modes empirically chosen
and Ω2 = c2π2[(dx/Lx)

2 + (dy/Ly)
2 + (dz/Lz)

2]. The
equation is an exact solution to the 3-D wave equation in
a rectangular domain of size Lx ×Ly ×Lz with perfectly
reflecting boundaries. Sine terms can also be included in
the expansion.

3. EXPERIMENTS

We will perform a sensitivity analysis on the convergence
and accuracy by varying the DeepONet setup. Evaluat-
ing all permutations of all choices will be too exhaustive.
Instead, we will determine a base model setup and investi-
gate the sensitivity of various choices covering the impact
of 1) activation functions, 2) Fourier feature expansions,
3) mod-MLP networks, 4) batch size, 5) the number of
layers and neurons, 6) data resolution, and 7) using a CNN
compared to mod-MLP for the branch net.

The base model uses the default MLP with 4 layers of
width 1024 for both the branch and trunk net. The ADAM
optimizer with learning rate 1e-3 and exponential decay is
used together with the MSE loss. The batch size is 64 for
the branch net and 100 for the trunk net with 2 ppw for
the branch net input functions (initial condition), 2 ppw
for the trunk net temporal dimension, 6 ppw for the trunk
net spatial dimensions, and the source position density is
sampled using 6 ppw.

To evaluate the learned model’s generalization prop-
erties, we ensure that the grid points are (mostly) non-
overlapping in the training and validation data sets. The

training and validation data have been generated using our
SEM solver. The training data is generated using 6 ppw
for the spatial resolution and 6 ppw for the source density
corresponding to 1363 source positions. The validation
data is generated using a spatial resolution of 5 ppw with
5 and 33 source positions.

3.1 Activation function

As a first investigation, we will compare the performance
using the tanh, the relu, and the sine activation func-
tions for the default MLP architecture with and without
Fourier feature expansion. Applying the Fourier feature
expansion when the sine activation functions are used
would be redundant and also show degraded performance
(not shown). The L2 training loss is depicted in Fig-
ure 1a (the validation loss is considered in later experi-
ments). We notice that relu and tanh activation func-
tions are not performing well without Fourier feature ex-
pansions. Applying the Fourier feature expansions im-
proves the learning significantly, with the best results ob-
tained for the relu activation function with Gaussian ex-
pansions. However, using the sine activation function
outperforms the other choices by a large margin.

In Figure 1b, the same experiments are performed but
for the mod-MLP network. We see dramatic improve-
ments for all activations, especially for the sine activa-
tion choice showing almost an order of magnitude lower
L2 errors. We notice a slight improvement for the sine
activation when combining the mod-MLP with the posi-
tional encodings. It is also interesting to note that the
tanh activation performs well when positional encod-
ings are applied using the mod-MLP architecture. In the
following experiments, we will use the sine activation
function with positional encodings.

3.2 Batch size

Here, we will investigate the impact of the batch size on
the network optimizer to find good optima. The valida-
tion data was generated for 5 source positions. In Table
1, the L2 errors are shown when varying the batch sizes
of the branch net function samples from 16 to 96 and the
spatial/temporal coordinates for the outputs from 100 to
800. We note that the batch size for the branch net should
have size 64 or 96, with corresponding batch sizes of 200
or more for the trunk net. The batch size impacts the com-
putational effort, and a good compromise could be to use
a batch size of 64/200 for the branch and trunk net, re-
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(a) Default MLP architecture. (b) Modified MLP architecture.

Figure 1: L2 validation loss for combinations of activation functions and Fourier feature expansion types. The
mod-MLP with sine activations dramatically outperforms the other combinations.

Table 1: Batch size experiments using sine activa-
tion functions. The L2 training/validation errors are
given for each batch size combination, where the to-
tal batch size is a multiple of the branch net (BN)
sample size and the temporal/spatial batch size for
the trunk net (TN). The region with the lowest L2 er-
rors is highlighted.

Batch sizes branch/trunk net

TN
BN Batch size

16 32 64 96

B
at

ch
si

ze

1e-6× 1e-6× 1e-6× 1e-6×
100 7.1/7.2 3.9/5.2 3.0/3.6 2.5/3.4
200 3.9/5.1 2.7/3.3 2.2/2.9 2.4/2.6
400 3.1/4.3 2.0/3.1 2.0/2.9 2.1/2.9
800 2.3/3.7 1.9/3.1 1.9/2.8 2.0/2.9

spectively, which we have chosen in the following experi-
ments.

3.3 Number layers and neurons

Table 2 shows the L2 errors when varying the network
depth from 3 to 5 and the network width from 512 to
2048. We observe that wider networks are more critical
for achieving good results than deeper ones. Using sine
activation function can be seen as a Fourier series expan-
sion [20], which could be the reason for the better perfor-
mance using wider networks. Applying wider networks

Table 2: L2 errors for varying the number of layers
(L) and neurons (N) using the sine activation func-
tion.

Layers/neurons architectures

L
N

512 1024 2048

2
t 1.9e-5 2.8e-6 1.6e-6
v 1.9e-5 4.4e-6 3.2e-6

3
t 6.8e-6 2.0e-6 1.5e-6
v 7.6e-6 3.0e-6 3.0e-6

4
t 4.6e-6 2.0e-6 1.8e-6
v 5.4e-6 2.9e-6 2.4e-6

5
t 4.2e-6 2.0e-6 1.6e-6
v 4.8e-6 2.9e-6 2.4e-6

is more computationally expensive; therefore, choosing a
compromise with more layers with fewer neurons can be
necessary. We will use the wider layers with 2048 neurons
and 2 layers, although slightly better results are obtained
with 4 layers.

3.4 Data resolution

The validation data for the following experiments includes
33 source positions instead of the five source position for
the previous two experiments to get a more truthful picture
of generalization when varying the data resolutions. In
Subtable 3a, results are shown for combinations of func-
tion resolutions for the branch net of 2 and 4 ppw with
spatial data resolutions for the trunk net of 2, 4, and 6 ppw
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Table 3: Data resolution for a 2/2048 layers/neurons
MLP for the branch and trunk net and batch size
64/200.

Relative resolution branch/trunk net

BN
TN PPW

2 4 6

PP
W 2 1.5e-6/1.1e-4 1.9/6.1e-6 1.9/5.5e-6

4 1.6e-6/6.3e-5 1.9/6.0e-6 1.7/5.1e-6
(a) Data resolution combinations for the branch net (BN)
and trunk net (TN).

Relative resolution src density/space/time
PPW

∆xsrcpos ∆x ∆t train val

2 6 2 1.5e-6 1.7e-5
3 6 2 1.7e-6 7.5e-6
4 6 2 1.7e-6 6.1e-6
5 6 2 1.7e-6 5.0e-6
6 6 2 1.8e-6 5.3e-6
6 6 4 2.0e-6 4.8e-6

(b) Impact from the source density on the generalization
properties.

while keeping the temporal resolution fixed at 2 ppw. We
notice severe overfitting when only 2 ppw are used for
the spatial resolution, with 6 ppw giving the best results.
No significant impact is observed when varying the input
function resolution of the branch net. In Subtable 3b, the
influence from the sampling density of the source posi-
tions ∆xsrcpos is shown, and we notice the least overfitting
when 5 or 6 ppw are used. We also note that using 4 ppw
for the temporal resolution is not increasing the accuracy
by much. This is true since we are overfitting to the uni-
form temporal steps when only using 2 ppw, which is not
a problem since temporal interpolation is not of practical
interest.

3.5 Convolutional neural network for the branch net

Finally, we will compare two ResNet architectures, the
ResNet-{3,3,3,3} with {16,32,64,128} hidden channels
for input functions of size 18 × 18 sampled with 2
ppw and the ResNet-{3,3,3,3,3} with hidden channels
{16,32,64,128,256} for input functions of size 35 × 35
sampled with 4 ppw. The standard ReLU activation func-
tion is used for the CNN architecture. A single linear out-
put MLP layer is used with sine activation functions.
The convergence of the loss can be seen in Figure 2 plot-

Figure 2: Validation loss for ResNet-{3,3,3} and
ResNet-{3,3,3,3} for branch input function resolu-
tions of 2 and 4 ppw.

ted together with the mod-MLP for comparison and shows
similar performance for all ResNet architectures on par
with the mod-MLP architecture reference.

4. CONCLUSION

We have systematically studied the DeepONet sensitivity
for wave propagation problems, focusing on network ar-
chitectures, data fidelity, and operator learning parame-
ters. The most prominent choice for successfully training
the model is to use the mod-MLP architecture in combina-
tion with sine activation functions. Moreover, the spatial
data resolution greatly impacts the accuracy of the trained
model, where 4-6 ppw for the spatial and 5-6 ppw for the
source density resolutions are required for the network to
generalize well for unseen source and receiver positions.
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ABSTRACT
Simulating acoustics e�ciently and accurately using numerical methods has been an active research

area for the last decades and has applications in computer games, VR/AR, and architectural design.

However, their extensive computation time makes these methods challenging for large scenes

and broad frequency ranges. This work attempts to accelerate the simulations using rectangular

decomposition, enabling error-free propagation in the bulk of the domain consisting of air. We exploit

the analytical solution to the wave equation in rectangular domains calculated using the Fast Fourier

Transform with near-optimal spatial discretization satisfying the Nyquist criterium. Coupling with

the spectral element method near the boundaries results in a method capable of handling complex

geometries with realistic boundaries, though with the caveat that additional errors and computational

overhead may result from the interface. This paper will investigate the accuracy and e�ciency of the

proposed domain decomposition method compared to a spectral element implementation running in

the entire domain and the results in 1D indicate an 18 times speedup factor for relative errors below

9%.
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1. INTRODUCTION

Simulating acoustics in virtual spaces is an active research topic, with applications in computer
games, VR/AR, and building acoustics. Using numerical methods to solve the underlying partial
di↵erential equations naturally takes the wave phenomena into account. However, it comes with
the cost of being computational demanding, especially when simulating broad frequency ranges and
large domains. To overcome the demanding computations, we will develop an e�cient and accurate
domain decomposition method coupling an e�cient and error-free Fourier method in rectangular
domains with an spectral element method applied at the boundaries handling complex geometries and
impedance boundaries.

The most used numerical methods for simulating acoustics are the finite element methods
(FEM) [12], spectral element methods (SEM) [14, 19], DG-FEM [11], finite-di↵erence time-domain
methods (FDTD) [5], boundary element methods [6], the Wave-Based Method (WBM) [17], and
Pseudo-spectral Fourier methods [8]. Domain decomposition methods (DDM) [3] are widely used
approaches where the domain is split into many partitions. We will use DDMs to divide the domain
into simpler partitions where specialized methods can be applied independently depending on the
properties of the domain. Our approach is inspired by Raghuvanshi et al. [10, 16], where an adaptive
rectangular decomposition (ARD) method was proposed, exploiting the well-known analytical
solution to the wave-equation in rectangular domains coupled with the FDTD method near the
boundaries. The ARD method has error-free propagation within the rectangular domains and can
be computed very e�ciently using the Fast Fourier Transform (FFT). Only numerical errors are
introduced at the interfaces. We follow the same approach, but instead of coupling with FDTD, we
couple the Fourier method (FM) with SEM, still using FDTD for interface handling though. The
SEM is advantageous over FDTD as it handles complex geometries and impedance boundaries [14]
in a robust manner. By coupling the e�cient Fourier method running in rectangular domains, and the
SEM near the boundaries, we can speed up the overall computation time for large scenes, where the
ratio between air and boundaries is large. Related domain decomposition approaches have been taken
to achieve similar goals. In [13], the time-domain Pseudo-Spectral element method was coupled
with the DG-FEM method near the boundaries. In [18] the Wave-Based method is applied in convex
domains and coupled with the second-order SEM in domains requiring geometrical flexibility.

We propose a method consisting of three parts: 1) an error-free Fourier method (FM) running
in rectangular domains, 2) the SEM for modeling complex geometries and realistic impedance
boundaries, and 3) an FDTD scheme for interface handling. In Figure 1a the domain decomposition
is illustrated.

Figure 1: Overview of the domain decomposition methods coupling the Fourier method in rectangular
partitions with the spectral element method near the boundaries.

SEM

SE
M FOURIER  

METHOD FO
U

RI
ER

  
M

ET
H

O
D

interface

interface

interface in
te

rfa
ce

interface

interface

interface

(a) A domain decomposed into
rectangular partitions running the
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SEM near the boundaries.

(b) Time step from n to n + 1 with Neumann boundary conditions at
the interface for each of the methods running in the separate partitions.
Note, that the methods in the partitions are running independently and
compensation of the reflections at the interface is done after each time step.



2. GOVERNING EQUATIONS

The wave equation is

@2
p(x, t)
@t2 � c

2
rp(x, t) = F(x, t), t 2 R+, x 2 RN . (1)

where p is the pressure (Pa), t is the time (s) and c is the speed of sound in air (m/s) and F(x, t) is a
forcing function. An initial conditions can be used instead of a forcing function satisfied by using e.g.
a Gaussian source for the pressure part and setting the velocity equal to zero

p(x, t = 0) = exp
2
66664�

 
x � x0

�0

!2377775 ,
@p(x, t = 0)
@t

= 0, x0 2 R
N , (2)

with �0 being the width of the pulse determining the frequencies to span and boundary conditions

@p(x, t)
@n

= v, x 2 �v, (3)

where v is the enforced velocity at the boundary �v, and n is the normal pointing outwards from the
boundary �. Equation (3) is the Neumann boundary conditions and is applied at the interface for
coupling domains – as explained in Section 4 – with v = 0.

3. THE FOURIER METHOD

3.1. The analytical solution
It can be shown by using separation of variables [1] (p. 155-157), that any 1D pressure field p(x, t) in
rectangular domains with Neumann boundary conditions can be represented in the form of a general
series representation

p(x, t) =
N�1X

i=0

Mi(t)�i(x), where Mi(t) = ae
jckit + be

� jckit, ki = ⇡
i

l
, (4)

and i is the mode, N is the maximum mode to include depending on the required frequency range,
Mi(t) is the time-varying mode coe�cients [9, 15], j =

p
�1 is the complex number, ki is the

wavenumber, and �i(x) = cos (kix) are the eigenfunctions of the Laplacian for a rectangular domain.
The time constants a and b depend on the initial conditions.

3.2. The discrete formulation
We can interpret the analytical solution (4) on a discrete uniform grid xi with the highest

wavenumber being spatially sampled at the Nyquist rate. Assuming that the signal is properly band-
limited and that enough modes N are included to capture the band-limited signal, the discretization
introduces no numerical errors.

In the discrete interpretation, Equation (4) is similar to the inverse Discrete Cosine Transform,
with �i being the cosine basis vectors. Hence, we can convert from modal coe�cients M to pressure
values p as

p(t) = iDCT(M(t)), (5)

where p is the N ⇥ 1 pressure vector and M(t) is the N ⇥ 1 vector including all modes for time t.
Reinterpreting the wave equation @

2
p

@t2
� c

2 @2
p

@x2 = F in a discrete setting for the spatial dimensions and
taking the cosine transform of both sides of the equality sign yields

@2

@t2 M(t) + c
2k2
�M(t) = DCT(F(t)), (6)



where F(t) is a N ⇥ 1 vector with pressure values of the forcing function in all spatial nodes at
time t, M(t) is a N ⇥ 1 vector with mode coe�cients corresponding to time t, k is a N ⇥ 1 vector
including the wave numbers, and � is the Hadamard product operator. Disregarding the forcing term,
the above equation describes a set of independent simple harmonic oscillators, each vibrating with its
characteristic frequency !i = cki.

In the case where the forcing term is a constant transformed into mode-space F̃, we can simply
solve the equation @2

@t2
Mi + !2

i
Mi � F̃i = 0, but since the forcing term changes with time, we need

to derive a temporal update scheme for this. We will assume that the forcing term is constant over
a time-step �t, which is satisfied when proper Nyquist sampling is applied. The forcing term may
be transformed into mode-space as F̃(n�t) , DCT(F(n�t)). We will use the second-order centered
di↵erence multiplied by the term !2�t

2

2(1�cos(!�t)) originating from the solution to the simple harmonic
oscillator, obtaining the update scheme [16]

M
(n+1)
i
= 2M

(n)
i

cos(!i�t) � M
(n�1)
i
+

2F̃
(n)

!2
i

(1 � cos(!i�t)). (7)

3.3. Discrete Fourier Transform for imposing Neumann boundary conditions
The formulation in the analytical formulation in (4) is real and hence, to ensure a real-valued

frequency spectrum after applying the Discrete Fourier Transform, an even Fourier continuation pk =

p�k and periodicity5 are required. Mirroring the samples around a boundary satifies the zero derivative
Neumann boundary condition in that point. The extended time signal p̂k of lenght (2N � 2) is then

p̂k =

8>><
>>:

pk, for 0  k < N,

p2N�k, for N  k < 2N � 1.
(8)

The single-sided frequency spectrum Mi consisting of N bins is used for time-stepping in Equation
(7). Again, but now in the Fourier domain, the even and periodic double-sided spectrum M̂i of size
(2N � 2) is reconstructed and the inverse Fourier Transform is applied to retrieve the time pressures
back as

M̂i =

8>><
>>:

Mi, for 0  i < N,

M2N�i, for N  i  2N � 1.
(9)

Extracting the first N pressures values from F �1(M̂i) gives us the final result. Hence, the DCT and
iDCT used in Section 3 and the remaining sections are referring to the definitions below

DCT
⇥
pk

⇤
= Re (F [p̂k]) ,

iDCT[Mi] = Re
⇣
F
�1[M̂i]

⌘
.

(10)

4. INTERFACE HANDLING

We will derive the interface scheme for communicating pressure values between partitions following
the same approach as Raghuvanshi [15, 16] to couple the FM in rectangular partitions with the SEM
near the boundaries. For clarity of presentation, we will consider the 1D wave equation using the
second-order centered di↵erences. The wave equation (1) discretized in space can be written as
@2

P

@t2
� KP = F(t), where K represents the Laplacian operator at each node as a Discrete Laplacian

Matrix and F is the forcing term at each node. As a result of spatial discretization, K is transformed

5if we have a signal ‘abcd’, then the even extension would be ‘abcdcb’.



into a symmetric matrix

K =
c

2

�x2

2
6666666666666666666666666666666664

. . .

1 �2 1
1 �2 1

1 �2 1
1 �2 1

. . .

3
7777777777777777777777777777777775

. (11)

Assume that the grid consists of N nodes. Care must be taken at the boundary, since calculating
the pressure value pN at the right-most node N would require the neighboring pressure value pN+1

located outside the grid for a Neumann boundary condition imposed by mirroring the pressure half-
way between the nodes or at the boundary node. We will denote the pressure values at these ghost
nodes as the residual. Eliminating the ghost nodes happens by discretizing the BCs and inserting
these expressions into the scheme. For example, for a right boundary node xN , the residual is added
to the inner partition as

p
00

N+1/2(xN) =
p(xN�1) � 2p(xN) + p(xN+1)

�x2

Neumann
N+1/2
=

p(xN�1) � p(xN)
�x2 ,

p
00

N
(xN) =

p(xN�1) � 2p(xN) + p(xN+1)
�x2

Neumann
N
=

2p(xN�1) � 2p(xN)
�x2 .

(12)

These observations can be used to formulate the interface handling between two separate partitions.
Suppose we wish to split the domain into two equal partitions with N nodes each, such that each
might be treated independently. P is a vector of length 2N. This can be done by decoupling K into
a block diagonal form while accounting properly for the o↵-diagonal entries K = A + C, where the
decoupled matrix A and the coupling matrix C are given by (interface located at N + 1/2)

A =
c

2

�x2

2
6666666666666666666666666666666664

. . .

1 �2 1
1 �1

�1 1
1 �2 1

. . .

3
7777777777777777777777777777777775

, C =
c

2

�x2

2
6666666666666666666666666666666664

0
. . .

�1 1
1 �1

. . .

0

3
7777777777777777777777777777777775

. (13)

The pressure is first updated using A, and the residual part not taken into account is then computed
using C. The coupling matrix C can intuitively be seen as a communication step to pass pressures
between two partitions, and the action of C is to compute the gradient of the pressure at the interface
(scaled by some factor). Rewriting in terms of the decoupled and coupled matrices yields @

2
P

@t2
� AP =

F(t) + CP, where the coupling term CP can be seen as an additional source term accounting for the
alignment of pressures between partitions as F̂(t) = F(t) +CP.

We can formulate a unified framework for communicating pressures between partitions running
any method. The boundary condition will be imposed at the pressure node N (not N + 1/2 as above)
since this will ease the implementation for the SEM where boundaries are explicitly defined at the
nodal points. Without lack of generality, assume that two independent (2,2) FDTD update schemes
are running in each partition and denote the pressures in partition 1 as p1,i and partition 2 as p2,i

with subscripts denoting the partition and corresponding node index, respectively. Then, the interface
communication can be handled as follows:



Figure 2: Interface handling with twice refined spatial and temporal resolutions in the right partition
compared to the left partition. (a) Neumann reflections present at time n + 1 and n + 1/2 with spatial
interpolation in partition 1. (b) Interface handling for time n+1 and n+1/2 by using the corresponding
�x1, �t1, �x2, �t2 values for the FDTD scheme in Equation (14)-(16). (c) Temporal interpolation in
the coarse domain for calculating n+1. (d) Interface handling for the fine domain (only) at time n+1.
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1. Calculate the pressures in each domain as completely independent partitions with Neumann
boundary condition at the interface
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⇣
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⌘
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(n)
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(n)
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2. Remove the residual part at time n corresponding to the reflected pressures

p
(n+1)
1,N  p

(n+1)
1,N �

c
2�t

2
1

�x
2
1

⇣
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⌘
, p

(n+1)
2,1  p
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2,1 �

c
2�t

2
2

�x
2
2

⇣
p

(n)
2,2

⌘
. (15)

3. Transfer the removed residual part at time n to the neighboring partition(s)

p
(n+1)
1,N  p

(n+1)
1,N +

c
2�t

2
1

�x
2
1
·

⇣
p

(n)
2,2

⌘
, p

(n+1)
2,1  p

(n+1)
2,1 +

c
2�t

2
2

�x
2
2

⇣
p

(n)
1,N�1

⌘
. (16)

Separating the pressure update scheme inside the cavity from the interface handling scheme makes it
clear that we can transfer pressures between partitions running any schemes. The sixth-order update
scheme used in this work can be derived in a similar manner. The spatial and temporal resolutions
will di↵er between partitions if the e�ciency of the Fourier method is to be exploited and therefore
piece-wise cubic Hermite interpolation is used in both space and time [2]. The procedure is depicted
in Figure 2.



Figure 3: Domain decomposition coupling FM with SEM by introducing a first-order SEM layer to
stabilize the scheme.
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4.1. Interfacing with the spectral element method
Since the interface handling is independent of the methods running in the partitions, coupling the FM
with the SEM can be implemented using the framework described. However, due to the non-physical
behavior caused by the Neumann condition at the interface at each time-step before compensating,
non-smooth second derivatives are introduced. This type of behavior is known as ‘shocks’ in the
literature, and it is well-known to introduce challenges for the SEM. An investigation has been made
by comparing the Laplacian term from Equation (1) for the SEM and FDTD methods

(SEM) p(n+1) = 2p(n)
� p(n�1)

SEM Laplacian

�c
2�t

2
M
�1

⇣
Sp(n)

⌘
+ �t

2f(n), (17)

(FDTD) p(n+1) = 2p(n)
� p(n�1)

FDTD Laplacian

+
c

2�t
2

�x2 Kp(n) + �t
2f(n), (18)

whereM is the mass matrix and S is the sti↵ness matrix [4, 7]. We have noted that noticable bigger
errors are introduced for higher-order SEM compared to first-order SEM. A simple remedy was to
add an SEM layer of first-order polynomials near the interface as illustrated in Figure 3.

5. NUMERICAL EXPERIMENTS

We will investigate the accuracy and e�ciency of the domain decomposition method coupling the FM
with the SEM. All experiments are done in a 1D domain with fmax = 1000 Hz with the di↵erentiated
Gaussian pulse injected halfway into the FM partition 1. In the following, we will use the notation
FM{ppw} and SEM{ppw}, i.e., FM4-SEM8 would be the FM-SEM coupling with spatial resolutions
of four and eight points per wavelength (ppw) per partition, respectively.

To assess the accuracy of the method, we will separately consider interface errors and errors over
time at a receiver position. The interface errors are investigated by measuring the reflected pressures in
the vicinity left to the interface for a left to right traveling wave at time trefl = 0.0135 s corresponding
to the wave having made a single pass through the interface. The errors over time at the receiver
position is compared against a FM reference solution for a total running time tmax = 0.2 s using
di↵erent measures.

5.1. Interface errors
The domain length in this experiment is 10 m split into two partitions of 5 m each. We measure the
interface pressure errors in dB as

✏interface = 20 log10

 
max(|pinterface|)
|pinc|

!
dB, (19)

where pinterface = {p(t, x) | x 2 [3.5, 5]m, t = 0.0135s} are the reflected pressure values in the vicinity
of the interface after a single interface traversal and has been chosen such that no other wavefronts



Table 1: Errors for the FM-SEM coupled using a sixth-order FDTD scheme for di↵erent spatial
resolutions determined by the points per wavelength, keeping the frequency range fixed. (a) FM-
SEM interface errors,(b) Relative error ✏rel and maximum error ✏1 calculated by comparing with an
exact Fourier reference solution.

Interface errors at t = 0.0135 s

FM
SEM

3 4 6 8 9 12

3 -25 dB -26 dB† -28 dB -26 dB† -26 dB -25 dB
4 - -34 dB -35 dB† -36 dB -32 dB† -32 dB

(a) †: �t1 = �t2, since the spatial resolution is not a multiple of each other.

Errors at t = 0.2 s

FM$SEM [ppw] ✏rel ✏1

4$ 4 - 0.2528
4$ 8 9.1% 0.0811

4$ 12 5.7% 0.0562
(b)

Figure 4: FM4-SEM8 running for tmax = 0.2 s. From left to right: 1) Wave propagation in the full
domain at t = 0.2 s, 2) impulse response at receiver position x = 6.0 m, 3) L1 IR error, 4) transfer
function at x = 6.0 m.
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are overlapping. The pressure values before traversing the interface are normalized by the incident
pressure pinc in the domain. ✏interface = �1 corresponds to zero pressures (no interface error) being
reflected.

The interface errors for the FM-SEM coupling are summarized in Table 1a. The errors are
measured for combinations of spatial resolutions in the partitions denoted by the number of ppw.
Overall, we see that using three ppw for the FM shows large errors indicating that four ppw is the
lowest resolution possible for reasonable accuracies. The FM can handle two ppw corresponding to
the Nyquist criterium but is limited by the sixth-order FD scheme at the interface. FM4-SEM8 gives
the lowest interface error of -36 dB.

5.2. Overall accuracy
Another investigation of the accuracy is to compare the simulation with a reference solution. The
error of the impulse responses (IRs) at receiver position x = 6.0 m is calculated in the relative error
✏rel and the maximum error ✏1 norms

✏rel(x) =
1
T

T�1X

n=0

|psim(tn, x) � pref(tn, x)|
|pref(tn, x)|

, ✏1(x) = max
n=0,1,...,T�1

|psim(tn, x) � pref(tn, x)|. (20)

The simulated pressures psim(tn, x) and the reference pressures pref(tn, x) correspond to the IRs at the
receiver position x for the discrete time steps tn, and T = dtmax/�te is the total number of time steps.
The results are summarized in Table 1b. First, we notice that FM4-SEM4 gives the largest errors
✏1 = 0.25 and very big relative errors (not included in the table). In contrary, coupling with SEM8
or SEM12 drastically improves the accuracy with errors of ✏1 < 0.08 and ✏rel < 9%. These results
are not all consistent with the interface errors; notice for example, that the FM4-SEM8 coupling (-36
dB) compared to FM4-SEM12 (-32 dB) has 4 dB lower reflection errors, which could indicate that the
SEM is introducing numerical dispersion errors also contributing to the overall error. Using other time
integration schemes, such as the Runge-Kutta method, should decrease the numerical SEM errors.

In Figure 4, the FM4-SEM8 is plotted against a reference solution showing the domain pressure at
tmax = 0.2 s, the IR and the transfer function (TF) at receiver position x = 6.0 m, and the corresponding
L1 errors over time for the IR. We see a good match between the simulation and the reference, though
some small noticeable pressure perturbations are primarily due to interface errors.

5.3. Convergence
In Figure 5 the convergence is plotted pair-wise for FM{2,4,8,16,32}-SEM{4,8,16,32,64} with 1)
fixed temporal resolution, 2) individual temporal resolution satisfying the Courant-Friedrichs-Lewy
condition, and 3) pair-wise for FM{16,32}-SEM{16-2,32-4} where the SEM P = 1 interface layer
is oversampled eight times compared to the main SEM with fixed temporal resolution. When the
P = 1 layer is finely oversampled, the forth-order spectral convergence is preserved, indicating that
the interface errors are converging at the same rate.

5.4. E�ciency
The theoretical speedup in 3D when running FM instead of SEM in the full domain is 2 ⇥ r

3, where
r is the spatial resolution factor between the FM and the SEM running in the two partitions, resulting
in a 16⇥ speedup for FM4-SEM8 and 54⇥ speedup for FM4-SEM12. The factor of 2 stems from
the time resolution being twice as coarse for the FM. On top of that, the SEM time complexity for
solving the system of equations consisting of sparse band matrices can be done in O(q2

n) + O(qn) in
time using direct solvers, where q is the bandwidth of the matrix and n is the degrees of freedom. The
Fourier method is O(N log(N)) in time when using the Fast Fourier Transform.

We will perform an empirical evaluation of the e�ciency gained from the FM-SEM coupling
compared to running the SEM in the entire domain for tmax = 0.2 s. The methods are implemented



Figure 5: h-Convergence plots: FM{2,4,8,16,32}-SEM{4,8,16,32,64} are plotted pair-wise in the two
top-most graphs, where 1) the temporal resolution is fixed for the blue graph, and 2) the temporal SEM
resolution is twice the FM resolution for the blue graph. The lower red graph 3) shows convergence
according to polynomial order P = 4 when oversampling 8 times the SEM P = 1 interface layer
compared to the main SEM P = 4.
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Table 2: FM4-SEM8 CPU timings for l = 50 m

FM partition size (r) FM solver SEM solver interface
50% 1.2% 84.9% 13.0%
80% 6.0% 53.6% 39.6%
95% 10.1% 18.5% 70.3%

in Matlab, and the timings exclude the matrix assembly. The vast majority of the time in the SEM is
spent solving the linear system of equations and is implemented using the Matlab backslash operator
x = A\b for solving the linear system Ax = b. For the FM, most of the work is spent in the Fourier
transformation, where the build-in Matlab function ‘FFT’ is used. In all experiments, we will compare
against the baseline forth-order SEM with Neumann boundaries. Future work should investigate more
optimal solvers – such as sparse solvers – for the SEM to make the comparison more fair.

In the first experiment, we compare the CPU time for a 1D case separately for the FM and SEM
running in the entire 1D domain of lengths l = [6, 13, 25, 50] m, i.e., with no couplings. The result is
shown in Figure 6a, and we see 3x to 71x speedups depending on the domain size. The CPU times
scale with O(l2) for the SEM and below the theoretical O(l log(l)) limit for the FM.

In the second experiment, we fix the 1D domain size to 50 m and compare the CPU time for the
FM-SEM coupling for di↵erent Fourier partition sizes of r = [10, 20, 50, 70, 80, 90, 95] % relative to
the entire domain. In Figure 6b the results are depicted, and we achieve speedups between 2x and 17x
for Fourier partition sizes above 50% with scaling close to O(r3). In Table 2, the timings for l = 50
m are shown separately for the FM and SEM solvers and the interface handling. We notice that the
SEM workload for a 50/50 partition split is taking 85% of the total computation time. Increasing the
partition size of FM drastically decreases the SEM workload, and for r = 95 %, the workload of the
interface handling starts dominating, taking up 70% of the time. Most of the workload at the interface
is because of the space and time spline interpolation, though there is significant overhead when calling
the interpolation methods interpolating only a few points near the interface. In fact, interpolating all
pressure values instead of only the values around the interface has a minor impact on the absolute
performance. Therefore, we expect more time-e�cient interpolations when extending to 2D and 3D,
where much bigger pressure grids are to be interpolated near the interface.



Figure 6: CPU timings in a 1D domain. a) Comparison between the FM and the SEM running in
the full domain for di↵erent domain sizes (no couplings), b) Comparison between FM-SEM and a
baseline SEM with di↵erent relative FM partition sizes.
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CONCLUSION

We have implemented and coupled SEM and FM using a (2,6) FDTD interfacing scheme handling
independent spatial and temporal resolutions. Coupling the Fourier method using four points per
wavelength with the SEM using eight points per wavelength in a 5 m + 5m domain results in -36
dB interface errors and 9.1% relative errors compared to a reference solution. Using 12 points per
wavelength for the SEM gives slightly better relative errors of 5.7%. The e�ciency of the coupled
method is compared against an SEM running in the entire domain. For a fixed domain size of 50 m,
the e�ciency of the coupled method is compared for di↵erent relative FM partition sizes, with an 18
times performance gain when 95% of the domain is running the FM. A more significant performance
gain is expected to be achieved when going to larger 2D and 3D domains due to more degrees of
freedom to be handled by the SEM. However, the workload at the interface will also grow compared
to 1D, but we expect it to still be negligible compared to the saved computation time running the more
expensive SEM solver.

Future work could consider the use of more accurate time-stepping schemes such as the Runge-
Kutta methods, improving the numerical accuracy of the SEM method. A current limitation of the
implemented method is the need for an additional SEM layer of first-order polynomials dominating
the overall convergence rate.
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ABSTRACT

Simulating acoustics using numerical methods efficiently and accurately has been an active research
area for the last decades and has applications in computer games, VR/AR, and architectural design.
However, their extensive computation time makes these methods challenging for large scenes and
broad frequency ranges. This work attempts to accelerate the simulations using rectangular decom-
position, enabling error-free propagation in the bulk of the domain consisting of air. We exploit the
analytical solution to the wave equation in rectangular domains calculated using the Fast Fourier
Transform with near-optimal spatial discretization satisfying the Nyquist criterium. Coupling with
the spectral element method near the boundaries results in a method capable of handling complex
geometries with realistic boundaries, though with the caveat that additional errors and computational
overhead may result from the interface. This paper will investigate the accuracy and efficiency of the
proposed domain decomposition method compared to a spectral element implementation running in
the entire domain.

1 Introduction

Simulating acoustics in virtual spaces is an active research topic, with applications in computer games, VR/AR, and
building acoustics. There are two types of methods for simulating acoustics: geometrical acoustics (GA) [23], where
the sound propagation is simplified and modeled as rays; and numerical acoustics, solving the physical equation
implicitly taking phenomena such as diffraction and scattering into account. The advantage of GA is its computational
efficiency; however, it is only considered valid in the upper-frequency range. Also, diffraction and scattering are not
directly taken into account and care must be taken to ensure smooth pressure transitions in interactive environments.
On the contrary, numerical acoustics solve the underlying physics and take all physical phenomena into account.
However, it comes with the cost of being computational demanding, especially when simulating broad frequency
ranges and large domains. To overcome the demanding computations, we will develop an efficient and accurate
domain decomposition method coupling an efficient and error-free Fourier method in rectangular domains with an
SEM applied at the boundaries handling complex geometries and impedance boundaries.

The most used numerical methods for simulating acoustics are the finite element methods (FEM) [17], spectral element
methods (SEM) [19], DG-FEM [16], finite-difference time-domain methods (FDTD) [3, 8, 13], boundary element
methods [9, 24], the Wave-Based Method (WBM) [5, 25], and Pseudo-spectral Fourier methods [11, 12]. Domain
decomposition methods (DDM) [1, 6] are widely used approaches, where the domain is split into many partitions.
DDMs are often used for large-scale scientific applications to divide the problem into smaller parts distributed across
multiple processors in parallel for efficiency purposes. In this work, we are not using domain decomposition in
this regard, but as a matter to divide the domain into simpler partitions where specialized methods can be applied
independently depending on the properties of the domain. Our method is inspired by Raghuvanshi et al. [15, 22],
where an adaptive rectangular decomposition (ARD) method was proposed, exploiting the well-known analytical
solution to the wave-equation in rectangular domains coupled with the FDTD method near the boundaries. The ARD
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(a) Illustration of a domain decom-
posed into rectangular partitions run-
ning the error-free Fourier method cou-
pled with the spectral element method
near the boundaries.

(b) Time step from n to n+1 with Neumann boundary conditions at the inter-
face for each of the methods running in the separate partitions. For the Fourier
method, the time-stepping is done in the frequency domain by first transform-
ing the pressure values to the frequency domain through the DFT. Then apply
the FDTD interface handling to communicate sound pressures between the two
partitions in the time domain. For the Fourier method, the updated values after
time-stepping is transformed back to the time-domain by applying the iDCT.

Figure 1: Overview of the domain decomposition methods coupling the Fourier method in rectangular partitions with
the spectral element method near the boundaries.

method has error-free propagation within the rectangular domains and can be computed very efficiently using the Fast
Fourier Transform (FFT). Only numerical errors are introduced at the interfaces. We follow the same approach by
coupling the Fourier method (FM) with the SEM (instead of the FDTD). The SEM is a very flexible method capable
of handling complex geometries and impedance boundaries [19]. By coupling the efficient Fourier method running
in rectangular domains, and the SEM near the boundaries, we can speed up the overall computation time for large
scenes, where the ratio between air and boundaries is large. Related domain decomposition approaches have been
taken to achieve similar goals. In [18], the time-domain Pseudo-Spectral element method was coupled with the DG-
FEM method near the boundaries. In [20, 26, 27] the Wave-Based method is applied in convex domains and coupled
with the second-order SEM in domains requiring geometrical flexibility.

Our method consists of three parts: 1) an error-free Fourier method (FM) running in rectangular domains, 2) the SEM
for modeling complex geometries and realistic impedance boundaries, and 3) an FDTD scheme for interface handling.
In Figure 1a the domain decomposition is illustrated.

2 Governing equations

The wave equation is

∂2p(x, t)

∂t2
− c2∇2p(x, t) = F (x, t), t ∈ R+, x ∈ RN . (1)

where p is the pressure (Pa), t is the time (s) and c is the speed of sound in air (m/s) and F (x, t) is a forcing function.
An initial conditions can be used instead of a forcing function satisfied by using e.g. a Gaussian source for the pressure
part and setting the velocity equal to zero

p(x, t = 0,x0) = exp

[
−
(
x− x0

σ0

)2
]
,

∂p(x, t = 0,x0)

∂t
= 0, x0 ∈ RN , (2)

with σ0 being the width of the pulse determining the frequencies to span and boundary conditions

∂p(x, t)

∂n
= v, x ∈ Γv, (3)

p(x, t) = p, x ∈ Γp, (4)

where v is the enforced velocity at the boundary Γv , p is the enforced pressure at the boundary Γp, and n is the normal
pointing outwards from the boundary Γ. Equation (3) and (4) are the Neumann and Dirichlet boundary conditions,
respectively, and the former is applied at the interface for coupling domains – as explained in Section 6 – with v =
0. This condition corresponds to a ‘hard wall’ allowing displacement of the particles in the medium with the net
directional force to be zero. Equation (3) is the Neumann boundary conditions and is applied at the interface for
coupling domains – as explained in Section 6 – with v = 0.

2
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3 The Fourier method in rectangular domains

3.1 The analytical solution

It can be shown by using separation of variables [2] (p. 155-157), that any 1D pressure field p(x, t) in rectangular
domains with Neumann boundary conditions can be represented in the form of a general series representation

p(x, t) =
N−1∑
i=0

Mi(t)Φi(x), where Mi(t) = aejckit + be−jckit, ki = π
i

l
, (5)

and i is the mode, N is the maximum mode to include depending on the required frequency range, Mi(t) is the time-
varying mode coefficients [14, 21], j =

√
−1 is the complex number, ki is the wavenumber, and Φi(x) = cos (kix)

are the eigenfunctions of the Laplacian for a rectangular domain. The time constants a and b depend on the initial
conditions.

3.2 The discrete formulation

We can interpret the analytical solution (5) on a discrete uniform grid xi with the highest wavenumber being spatially
sampled at the Nyquist rate. Assuming that the signal is properly band-limited and that enough modes N are included
to capture the band-limited signal, the discretization introduces no numerical errors.

In the discrete interpretation, Equation (5) is similar to the inverse Discrete Cosine Transform, with ϕi being the cosine
basis vectors. Hence, we can convert from modal coefficients M to pressure values p as

p(t) = iDCT(M(t)), (6)

where p is the N × 1 pressure vector and M(t) is the N × 1 vector including all modes for time t. Reinterpreting the
wave equation ∂2p

∂t2 − c
2 ∂2p
∂x2 = F in a discrete setting for the spatial dimensions and taking the cosine transform of

both sides of the equality sign yields

∂2

∂t2
M(t) + c2k2 ⊙M(t) = DCT(F(t)), (7)

where F(t) is aN×1 vector with pressure values of the forcing function in all spatial nodes at time t, M(t) is aN×1
vector with mode coefficients corresponding to time t, k is a N × 1 vector including the wave numbers, and ⊙ is the
Hadamard product operator. Disregarding the forcing term, the above equation describes a set of independent simple
harmonic oscillators, each vibrating with its characteristic frequency ωi = cki.

In the case where the forcing term is a constant transformed into mode-space F̃ , we can simply solve the equation
∂2

∂t2Mi + ω2
iMi − F̃i = 0, but since the forcing term changes with time, we need to derive a temporal update scheme

for this. We will assume that the forcing term is constant over a time-step ∆t, which is satisfied when proper Nyquist
sampling is applied. The forcing term may be transformed into mode-space as F̃(n∆t) ≜ DCT(F(n∆t)). We will use
the second-order centered difference multiplied by the term ω2∆t2

2(1−cos(ω∆t)) originating from the solution to the simple
harmonic oscillator, obtaining the update scheme [22]

M
(n+1)
i = 2M

(n)
i cos(ωi∆t)−M (n−1)

i +
2F̃ (n)

ω2
i

(1− cos(ωi∆t)). (8)

Arbitrary source signals can be included as forcing functions F from Equation 7. Alternatively, source signals can be
included as initial conditions (typically Gaussian functions). Since the wave-equation is a second-order in time, two
initial conditions are needed in both cases.

The simulation loop for solving the wave equation in a rectangular domain is summarized here:

• Initialization (n = 0 and n = 1):

1. Transform a forcing signal F(0) and F(−1) into mode-space F̃(0) and F̃(−1), respectively, by using the
DCT.

2. M(0) and M(−1) are initialized in either ways:
Source injection. Initial conditions is trivially set to zero as M(0) = 0 and M(−1) = 0.
Source as initial conditions. When the initial condition is M(0) = F̃(0), then the second condition is

chosen such that the function is correctly evaluated at the previous time-step M(−1) = F̃(−1).

3
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• Simulation loop (n ≥ 2):

1. Calculate all modes (i = 0 . . . N − 1) for time-step n+1 denoted by the matrix M(n+1) using Equation
(8).

2. Transform all modes M(n+1) to pressure values by applying iDCT.
3. Transform the forcing signal F(n+1) into mode-space F̃(n+1) by using the DCT for the next time-step
n+ 1.

4. Set M(n−1) = M(n), M(n) = M(n+1) and F(n) = F(n+1) in Equation (8).

3.3 Discrete Fourier Transform for imposing Neumann boundary conditions

The formulation in the analytical formulation in (5) is real and hence, to ensure a real-valued frequency spectrum
after applying the Discrete Fourier Transform, an even Fourier continuation pk = p−k and periodicity1 are required.
Mirroring the samples around a boundary satifies the zero derivative Neumann boundary condition in that point. The
extended time signal p̂k of lenght (2N − 2) is then

p̂k =

{
pk, for 0 ≤ k < N,
p2N−k, for N ≤ k < 2N − 1.

(9)

The single-sided frequency spectrum Mi consisting of N bins is used for time-stepping in Equation (8). Again, but
now in the Fourier domain, the even and periodic double-sided spectrum M̂i of size (2N − 2) is reconstructed and the
inverse Fourier Transform is applied to retrieve the time pressures back as

M̂i =

{
Mi, for 0 ≤ i < N,
M2N−i, for N ≤ i ≤ 2N − 1.

(10)

Extracting the first N pressures values from F−1(M̂i) gives us the final result. Hence, the DCT and iDCT used in
Section 3 and the remaining sections are referring to the definitions below

DCT [pk] = Re (F [p̂k]) ,

iDCT[Mi] = Re
(
F−1[M̂i]

)
.

(11)

3.4 Relation between normal modes and spatial dimension

The spatial resolution is dependent on the maximum simulation frequency determined in this setup by the number of
modes and the spatial dimension. We have the following relations between wavelength λmin, domain size l, number
of modes N and max frequency fmax

λmin =
l

N
(12)

fmax =
c

λmin
(13)

The grid resolution following the Nyquist Theorem is

∆x =
λmin

2
=

l

2N

The relation between the time domain dimension K and the frequency domain dimension N is

K =
l

∆x
= 2N ⇒ N = K/2

Hence, 2N modes should be included to match the spatial resolution ∆x with K nodes. From DSP theory, we know
that transforming a time signal s with K number of samples using the Fourier transform results in a double-sided
frequency signal S with K bins. Though, since we are performing a Fourier extension as explained in Section 3.3, the
remaining K bins include only the single-sided frequency signal containing all necessary information to reconstruct
the time signal.

1if we have a signal ‘abcd’, then the even extension would be ‘abcdcb’.

4
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4 Finite-Difference Time-Domain scheme

4.1 Update scheme

The second-order centered finite-difference (leapfrog) scheme is used for time-integration

∂2p

∂t2
=
p(n+1) − 2p(n) + p(n−1)

∆t2
+O(∆t2), (14)

where n is the time-step, ∆t is the discretization resolution and O(∆t2) is the truncation error. The sixth-order
centered finite-difference scheme is used for spatial differentiation

∂2p

∂x2
=

2pi−3 − 27pi−2 + 270pi−1 − 490pi + 270pi+1 − 27pi+2 + 2pi+3

∆x2

+O(∆x6),
(15)

where ∆x is the spatial resolution. The (2,6) FDTD update scheme can then be summarized

p
(n+1)
i = 2p

(n)
i − p(n−1)

i + c2∆t2×

2p
(n)
i−3 − 27p

(n)
i−2 + 270p

(n)
i−1 − 490p

(n)
i + 270p

(n)
i+1 − 27p

(n)
i+2 + 2p

(n)
i+3

∆x2

(16)

The relation between the spatial and temporal resolution is

∆t =
∆x

CFL× c
, (17)

where CFL is the Courant condition depending on the scheme. Unless other is stated, we will use CFL =
√
3 in this

work.

5 Spectral element method

5.1 Update scheme

We present the wave equation from Equation (1) in 2D with velocity (Neumann) boundary condition on Γv from
Equation (3), and pressure (Dirichlet) boundary conditions on Γp from Equation (4). The weak form is achieved by
multiplying with a test function ϕ vanishing at the endpoints and integrating over the domain as∫

Ω

(
∂2p

∂t2
− c2∇2p

)
ϕdΩ− c2

[∮
Γv

(nT∇p− vn)ϕdΓv +

∮
Γp

(p− p)ϕdΓp

]

=

∫ ∫
Ω

Fϕdxdy,

(18)

where n is the surface normal vector pointing outwards, vn and p are the enforced velocity and pressure at the
boundaries, respectively. By applying integration by parts, it is possible to reduce the derivation order by one for the
Laplacian terms. Regarding the integration term, Green’s first identity∫

Ω

(ψ∇2φ+∇ψ∇φ)dΩ =

∮
Γ

ψ

(
∂φ

∂n

)
dΓ (19)

can be applied to eliminate the normal pressure derivatives (Green’s identity can also be seen as the equivalent to
integration by parts in higher dimensions), thus∫

Ω

∂2p

∂t2
ϕdΩ +

∫
Ω

c2∇p∇ϕ+ c2

[∮
Γv

vnϕdΓv +

∮
Γp

(p− p)ϕdΓp

]

=

∫ ∫
Ω

Fϕdxdy,

(20)

Now, a truncated series expansion for the unknown variable p is introduced

p(x, y) ≈ p̂(x, y) =
K∑
i=1

p̂iNi(x, y), (21)

5
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where Ni(x, y) ∈ V is chosen from the space of globally continous piecewise orthogonal polynomials of degree at
most P defined as V = {PP } possessing the cardinal property Ni(xj) = δij . In this work, Lagrange polynomials
are chosen spanning the space V . Insert Equation (21) for p into Equation (20) and setting the test function equal to
each of the basis functions ϕ = {Ni(x, y)}Ki , with K being the number of nodes, we get the following semi-discrete
system

M∂2p

∂t2
= −c2Sp+Mf (22)

whereM and S = Sx+Sy are the so-called mass and stiffness matrices, respectively, and where the terms vnBv+Bpp
concerning the boundary conditions, are included in the stiffness matrix. In Section 5.2 and 5.3, these matrices are
defined in more details. The update formula after applying the 2nd order centered finite difference scheme in time
from Equation (14) yields

p(n+1) = 2p(n) − p(n−1) − c2∆t2M−1
(
Sp(n)

)
+∆t2f (n) (23)

5.2 Defining the mass and stiffness matrices

The mass and stiffness matricesM and S are defined by first introduced the following global matrices from the global
piecewise basis functions Ni

Mij =

∫ ∫
Ω

Ni(x, y)Nj(x, y)dxdy,

Sx,ij =
∫ ∫

Ω

∂Ni(x, y)

∂x

∂Nj(x, y)

∂x
dxdy,

Sy,ij =
∫ ∫

Ω

∂Ni(x, y)

∂y

∂Nj(x, y)

∂y
dxdy

Bij =
∫ ∫

Γ

Ni(x, y)Nj(x, y)dxdy,

(24)

It is convenient to introduce the concept of a local element matrix; due to the nature of the global piecewise basis
function in Equation (24), the integrals are only non-zero in the overlapping regions where the nodes i, j belong to the
same element. We therefore define the local element matrices, where (i, j) are the indexes of the q’th non-overlapping
element eq (matrix B omitted)

M(q)
ij =

∫ ∫
en

N
(q)
i (x, y)N

(q)
j (x, y)dxdy,

S(q)x,ij =

∫ ∫
en

∂N
(q)
i (x, y)

∂x

∂N
(q)
j (x, y)

∂x
dxdy,

S(q)y,ij =

∫ ∫
en

∂N
(q)
i (x, y)

∂y

∂N
(q)
j (x, y)

∂y
dxdy,

(25)

The global matricesM, S, and B from Equation (24) can be constructed from the local matrices in Equation (25) by
summing the (local) element contributions

Mij =

∫ ∫
eq

NiNjdxdy =

Nel∑
n=1

∫ ∫
eq

N
(q)
i N

(q)
j dxdy, (26)

whereNel are the number of elements, and similarly for the matrices S and B. Note, that the resulting matrix is sparse,
due to the local support of the basis functions, allowing for using efficient solvers for the system of equations.

5.3 Solving the integrals

The integrations in (25) can be calculated exactly without resorting to, e.g. Gaussian quadratures. It is convenient to
introduce a reference triangle element [7]

I = {(r, s)|(r, s) ≥ −1 ≤ r, s; r + s ≤ 0}

6
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The nodal Lagrange basis functions Nn(r, s) can be determined on the reference element I using the Vandermonde
matrix V

Nn(r, s) =
P+1∑
n=1

(
VT

)−1

i,n
ψn(r, s) (27)

whereψn(r, s) are modal Legendre polynomials and the nodal distribution of the collocation points r, s of the reference
element is of the Legendre-Gauss-Lobatto (LGL) kind. Inserting the above into the expression for the mass matrix in
(25), but on the reference element yields

M = (VVT )−1 (28)
where V is the Vandermonde matrix. The mapping from the local reference element I to the global element eq on
(x, y) in (25) is

M(q)
ij =

∫ ∫
en

N
(q)
i (x, y)N

(q)
j (x, y)dxdy =

J (q)

∫ ∫
I
N

(q)
i (r, s)N

(q)
j (r, s)drds

(29)

where J (q) is the Jacobian mapping from local to the global element q as (x, y) → (r, s). Regarding the stiffness
matrix, we use

∂

∂r
Ni(r, s) =

P+1∑
n=1

∂

∂r
Ni(rn, sn)Nn(r, s) (30)

and inserting the above term into the expression for the stiffness matrix, but (again) on the reference element yields

Sr = DT
rMDr, Ss = DT

sMDs (31)

where Dr is the differentiation matrix

Dr = VrV−1 (32)

The mapping from the reference element to the global element q for the stiffness matrix is again done using the
Jacobian J (q)

S(q) = J (q)DT
xMDx + J (q)DT

yMDy (33)

where
Dx = rxDr + sxDs, Dy = ryDr + syDs (34)

and rx, ry, sx, sy are geometrical factors. To summarize, the mass and stiffness matrices for the q’th element can be
calculated as

M(q) = J (q)(VVT )−1, S(q) = J (q)DT
xMDx (35)

6 Interface handling

We will derive the interface scheme for communicating pressure values between partitions following the same ap-
proach as Raghuvanshi [21, 22] to couple the FM in rectangular partitions with the SEM near the boundaries. For
clarity of presentation, we will consider the 1D wave equation using the second-order centered differences. The wave
equation (1) discretized in space can be written as ∂2P

∂t2 −KP = F (t), where K represents the Laplacian operator at
each node as a Discrete Laplacian Matrix and F is the forcing term at each node. As a result of spatial discretization,
K is transformed into a symmetric matrix

K =
c2

∆x2



. . .
1 −2 1

1 −2 1
1 −2 1

1 −2 1
. . .


. (36)

7
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Assume that the grid consists of N nodes. Care must be taken at the boundary, since calculating the pressure value pN
at the right-most node N would require the neighboring pressure value pN+1 located outside the grid for a Neumann
boundary condition imposed by mirroring the pressure half-way between the nodes or at the boundary node. We will
denote the pressure values at these ghost nodes as the residual. Eliminating the ghost nodes happens by discretizing
the BCs and inserting these expressions into the scheme. For example, for a right boundary node xN , the residual is
added to the inner partition as

p′′N+1/2(xN ) =
p(xN−1)− 2p(xN ) + p(xN+1)

∆x2

Neumann
N+1/2
=

p(xN−1)− p(xN )

∆x2
,

p′′N (xN ) =
p(xN−1)− 2p(xN ) + p(xN+1)

∆x2

Neumann
N
=

2p(xN−1)− 2p(xN )

∆x2
.

(37)

These observations can be used to formulate the interface handling between two separate partitions. Suppose we wish
to split the domain into two equal partitions with N nodes each, such that each might be treated independently. P is
a vector of length 2N . This can be done by decoupling K into a block diagonal form while accounting properly for
the off-diagonal entries K = A+C, where the decoupled matrix A and the coupling matrix C are given by (interface
located at N + 1/2)

A =
c2

∆x2



. . .
1 −2 1

1 −1
−1 1
1 −2 1

. . .


, C =

c2

∆x2



0
. . .

−1 1
1 −1

. . .
0


. (38)

The pressure is first updated using A, and the residual part not taken into account is then computed using C. The
coupling matrix C can intuitively be seen as a communication step to pass pressures between two partitions, and the
action of C is to compute the gradient of the pressure at the interface (scaled by some factor). Rewriting in terms of
the decoupled and coupled matrices yields ∂2P

∂t2 −AP = F (t) + CP , where the coupling term CP can be seen as an
additional source term accounting for the alignment of pressures between partitions as F̂ (t) = F (t) + CP .

We can formulate a unified framework for communicating pressures between partitions running any method. The
boundary condition will be imposed at the pressure node N (not N + 1/2 as above) since this will ease the imple-
mentation for the SEM where boundaries are explicitly defined at the nodal points. Without lack of generality, assume
that two independent (2,2) FDTD update schemes are running in each partition and denote the pressures in partition 1
as p1,i and partition 2 as p2,i with subscripts denoting the partition and corresponding node index, respectively. Then,
the interface communication can be handled as follows:

1. Calculate the pressures in each domain as completely independent partitions with Neumann boundary
condition at the interface

p
(n+1)
1,N ← c2∆t21

∆x21

(
2p

(n)
1,N−1 − 2p

(n)
1,N

)
+ 2p

(n)
1,N − p

(n−1)
1,N + F

(n)
1,N ,

p
(n+1)
2,1 ← c2∆t22

∆x22

(
−2p(n)2,1 + 2p

(n)
2,2

)
+ 2p

(n)
2,1 − p

(n−1)
2,1 + F

(n)
2,1 .

(39)

2. Remove the residual part at time n corresponding to the reflected pressures

p
(n+1)
1,N ← p

(n+1)
1,N − c2∆t21

∆x21

(
p
(n)
1,N−1

)
, p

(n+1)
2,1 ← p

(n+1)
2,1 − c2∆t22

∆x22

(
p
(n)
2,2

)
. (40)

3. Transfer the removed residual part at time n to the neighboring partition(s)

p
(n+1)
1,N ← p

(n+1)
1,N +

c2∆t21
∆x21

·
(
p
(n)
2,2

)
, p

(n+1)
2,1 ← p

(n+1)
2,1 +

c2∆t22
∆x22

(
p
(n)
1,N−1

)
. (41)
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Figure 2: Interface handling with twice refined spatial and temporal resolutions in the right partition compared to the
left partition. (a) Neumann reflections present at time n + 1 and n + 1/2 with spatial interpolation in partition 1. (b)
Interface handling for time n+ 1 and n+ 1/2 by using the corresponding ∆x1, ∆t1, ∆x2, ∆t2 values for the FDTD
scheme in Equation (39)-(41). (c) Temporal interpolation in the coarse domain for calculating n + 1. (d) Interface
handling for the fine domain (only) at time n+ 1.
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Separating the pressure update scheme inside the cavity from the interface handling scheme makes it clear that we
can transfer pressures between partitions running any schemes. The sixth-order update scheme used in this work can
be derived in a similar manner. The spatial and temporal resolutions will differ between partitions if the efficiency of
the Fourier method is to be exploited and therefore piece-wise cubic Hermite interpolation is used in both space and
time [4]. The procedure is depicted in Figure 3.

6.1 6th order Laplacian

The coupling between domains using the sixth-order finite-difference scheme follows the same procedure as the
second-order finite-difference scheme. We will write up the matrices and illustrate the coupling graphically. Again,
Neumann boundary condition implies even symmetry of the pressure field half-way between the interface node
N + 1/2, i.e. assume that node N and N + 1 lies inside two different domain, then p1,N = p2,1, p1,N−1 = p2,2 and
p1,N−2 = p2,3 summarized in the Discrete Laplacian Matrix K

K =
c2

∆x2



. . .
2 −27 270 −490 270 −27 2

2 −27 270 −490 270 −27 2
2 −27 270 −490 270 −27 2

2 −27 270 −490 270 −27 2
2 −27 270 −490 270 −27 2

2 −27 270 −490 270 −27 2
. . .


. (42)

9
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Removing the residual part of the stencil (ghost points outside the domains) and re-adding these inside the domain
gives

A =
c2

∆x2



. . .
2 −27 270 −490 270 −25 0

2 −27 270 −488 243 0 0
2 −25 243 −220 0 0 0

0 0 0 −220 243 −25 2
0 0 243 −488 270 −27 2

0 −25 270 −490 270 −27 2
. . .


, (43)

and the coupling matrix, C is given by

C =
c2

∆x2



0
. . .

−2 2
−2 27 −27 2

−2 27 −270 270 −27 2
2 −27 270 −270 27 −2

2 −27 27 −2
2 −2

. . .
0


.

The matrix A is now enforcing Neumann boundaries around the interface pN+1/2 assuming pN is at the interface
boundary in the original formulation using K. The framework for the sixth-order scheme is similar to the steps 1-3
for the 2nd-order scheme, and the corresponding steps 2-3 collapsed into one step for p(n+1)

1,N is:

p
(n+1)
1,N ← p

(n+1)
1,N

− c2∆t21
180∆x21

·
(
270p

(n)
1,N−1 − 27p

(n)
1,N−2 + 2p

(n)
1,N−3

)
+

c2∆t22
180∆x22

·
(
270p

(n)
2,2 − 27p

(n)
2,3 + 2p

(n)
2,4

)
.

(44)

The remaining pressure values p1,N−1 and p1,N−2 near the interface can be calculated in a similar manner.

6.2 Handling different spatial and temporal resolutions in domains

The spatial and temporal resolutions will differ between partitions if the efficiency of the Fourier method is to be
exploited. Therefore, interpolation is needed in time and space as depicted in Figure 3. The procedure is outlined in
the following, where the time scale is relative to the coarse (left) domain. Piece-wise cubic Hermite interpolation is
used2 in both space and time, choosing slopes such that the second derivative is continuous [4].

(a) Calculate pressure values p(n+1)
1 and p(n+1/2)

2 with individual temporal and spatial resolutions.
(b) Do interface handling with individual temporal resolutions ∆t1 and ∆t2:

Partition 1 adjustment. Do spatial interpolation in partition 2 with ∆x1 and apply interface handling as
outlined in Eq. (44) with ∆x2 ← ∆x1 and ∆t1 ̸= ∆t2.

Partition 2 adjustment. Do spatial interpolation in partition 1 with ∆x2 and apply interface handling with
∆x1 ← ∆x2 and ∆t1 ̸= ∆t2.

(c) Calculate pressure values p(n+1)
1 and p(n+1)

2 using fine ∆t2 temporal resolution in both partitions ∆t1 ←
∆t2:

Temporal interpolation. Obtain p(n+1/2)
1 by interpolating in time using p(n)1 and p(n+1)

1 .

2the Matlab 2021b function ‘spline’ has been used.
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Figure 3: Illustration of the interface handling states with twice refined spatial and temporal resolutions in the right
partition compared to the left partition. (a) State where Neumann reflections are present at time n+1 and n+1/2 for
the coarse and fine resolution partitions, respectively. Spatial interpolation is done in partition 1, matching partition
2. (b) Interface handling compensating for the reflections directly between pressures corresponding to time n+ 1 and
n+1/2. The reflected pressures are correctly being compensated for by using the corresponding ∆x1, ∆t1, ∆x2, ∆t2
values for the FD update scheme in Eq. (44). (c) To calculate n + 1 for the fine resolution partition (right), temporal
interpolation is done in the coarse domain (left) to achieve n+1 needed for interface handling. The pressures at n+1
in (a) could also have been used, but fewer interface errors are introduced in this manner. (d) Interface handling is
done using the pressure values at time n+1. The pressure values at n+1/2 for the coarse domain are then discarded.

Time n+1 pressures calculations. p(n+1)
1 is calculated from p

(n)
1 and interpolated p(n+1/2)

1 setting ∆t1 ←
∆t2; p(n+1)

2 is calculated using p(n)2 and (interface corrected) p(n+1/2)
2 .

(d) Do interface handling (∆t1 ← ∆t2)

Partition 1 adjustment. Do spatial interpolation in partition 2 with ∆x1 and apply interface handling with
∆x2 ← ∆x1 and ∆t1 ← ∆t2.

Partition 2 adjustment. Do spatial interpolation in partition 1 with ∆x2 and apply interface handling with
∆x1 ← ∆x2 and ∆t2.

Note that interpolation in time is done after adjusting for reflections caused by the Neumann boundary condition;
this is important since the interpolation would otherwise be unprecise, including significant errors for the interface
handling at time n+ 1/2.

6.3 Interfacing with the Spectral-Element method

Since the interface handling is independent of the methods running in the partitions, coupling the FM with the SEM
can be implemented. However, due to the non-physical behavior caused by the Neumann condition at the interface at
each time step before compensating, non-smooth second derivatives are introduced. This type of behavior is known as
‘shocks’ in the literature, and it is well-known to introduce challenges for the SEM. An investigation has been made

11
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Figure 4: Accuracy of the Laplacians for the FDTD scheme and SEM when the interface residual is subtracted.

by comparing the Laplacian term from Eq. (1) for the SEM and FDTD methods

(SEM) p(n+1) = 2p(n) − p(n−1)

SEM Laplacian

−c2∆t2M−1
(
Sp(n)

)
+∆t2f (n), (45)

(FDTD) p(n+1) = 2p(n) − p(n−1)

FDTD Laplacian

+
c2∆t2

∆x2
Kp(n) +∆t2f (n). (46)

The Laplacians annotated with boxes above are plotted in Figure 4 for the second-order interface scheme applied to
the second-order FDTD method and the first and second-order SEM. The two methods are running simultaneously in
the entire domain (no coupling) with the residual subtracted corresponding to applying only Eq. (39) and (40), and
leave out Eq. (41). This correspond to transforming from Neumann to Dirichlet boundary conditions with endpoints
p(−∆x, t) = p(l +∆x, t) = 0 outside the domain. No interface errors are introduced in the FDTD simulation since
the interface scheme and the simulation scheme have the same order. We note that much bigger errors are introduced
for the higher-order SEM due to the shock introduced when enforcing Neumann boundaries at each time step, which
can be observed both in the pressure plot and the plot of the Laplacians at x = 0. Therefore, a simple remedy is to
add an SEM layer of first-order polynomials near the interface as illustrated in Figure 5, where the number of nodes
in the layer should correspond to half the interface scheme order. In [10] [Section 5.6], filtering methods have been
proposed to reduce the errors in the presence of shocks, and it should be investigated if this method can be applied to
reduce the approximation errors for higher-order SEMs.

7 Source signals

When choosing an excitation signal, all input signals can be used as long as the signal is band-limited to fit the
frequency range of the simulation. We are considering the normalized differentiated Gaussian

Ut(t) =
t− t0
tw

e
− (t−t0)2

t2w , Ux(x) =
x− x0
xw

e
− (x−x0)2

x2
w , (47)

where t0 is the time delay, and x0 is the center of the Gaussian. The constants tw and xw are determining the width of
the Gaussian in the temporal and spatial dimensions3 defined as

tw =
1

(π · νfmax/2)
, xw =

c

(π · νfmax/2)
, (48)

3At each discrete time-step ∆t, the duration must be less than the time it takes for the wave to travel to the next spatial point,
i.e., c∆t = ∆x, implying xw = ctw for the spatial domain.
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Figure 5: Domain partitioning coupling the Fourier method with the SEM including a tiny layer running the 1st order
SEM.

where t0 ≥ 4tw is ensuring smooth signal initializations. The source taking both spatial and temporal dimensions into
account is

F (x, t) = Ut(t)Ux(x). (49)

When gradually injecting the time/space forcing function in Equation (49), the resulting wave propagation in the
simulations has shown to not exactly span the expected frequencies determined from the width of the Gaussian function
in Equation (48). Although the relation of tw and xw is properly formulated through the maximum frequency fmax and
the speed of sound c, the resulting wavelength in the simulation is slightly larger compared to the spatial formulation
in Equation (47). Therefore the constant ν ≥ 1 is introduced to adjust the frequencies. We have found that choosing
νsim = 1.3 for the injected source in Equation (49) is resulting in simulated waves with expected wavelengths.

8 Experiments

We will investigate the accuracy and efficiency of the domain decomposition method coupling the FM with the SEM.
All experiments are done in a 1D domain with fmax = 1000 with the differentiated Gaussian pulse injected halfway
into the FM partition 1. In the following, we will use the notation FM{ppw} and SEM{ppw}, i.e., FM4-SEM8 would
be the FM-SEM coupling with spatial resolutions of four and eight ppw per partition, respectively.

To access the accuracy of the method, we will separately consider interface errors, and errors over time at a receiver
position. The interface errors are investigate by measuring the reflected pressures in the vicinity left of interface for
a left to right travelling wave at time trefl = 0.0135 corresponding to the wave having made a single pass through the
interface. The errors over time at the receiver position is compared against a reference solution for a total running time
tmax = 0.2 s using different measures.

8.1 Interface errors

The domain length in this experiment is 10 m split into two partitions of 5 m each. We measure the reflected pressure
errors in dB as

ϵinterface = 20 log

(
max(prefl)

pmax

)
dB, (50)

where prefl = {p(t, x) | x ∈ [3.5, 5], t = 0.0135} are the reflected pressure values in the vicinity of the interface after
a single interface traversal and has been chosen ad hoc such that no other wavefronts are overlapping. The pressure
values before traversing the interface are normalized by the maximum pressure pmax in the domain. The interface error
is then the relation between the incident and the reflected wave where ϵinterface = −∞ corresponds to zero pressures
(no interface error) being reflected.

The interface errors for the FM-SEM and FM-FM couplings are summarized in Table 1a and 1b, respectively. The
errors are measured for combinations of spatial resolutions in the partitions denoted by the number of ppw. Overall,
we see that using three ppw for the FM shows large errors indicating that four ppw is the lowest resolution possible for
reasonable accuracies. The FM can handle two ppw corresponding to the Nyquist criterium but is limited by the sixth-
order FD scheme at the interface. FM4-FM4 gives -41 dB interface errors, which is among the lowest combinations
for coupling FMs, whereas FM4-SEM8 gives the lowest interface error of -36 dB for coupling FM with SEM.
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Figure 6: FM-SEM running until tmax = 0.2 s. From the top: 1) Wave propagation in the full domain at t = 0.2 sec,
2) impulse response at receiver position x = 6.0 m, 3) L1 error, 4) transfer function at xr = 6.0. a) FM4-SEM8, b)
FM4-SEM12.
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Interface errors at t = 0.0135 sec

FM
SEM 3 4 6 8 9 12

3 -25 dB -26 dB† -28 dB -26 dB† -26 dB -25 dB
4 - -34 dB -35 dB† -36 dB -32 dB† -32 dB

(a)

Interface errors at t = 0.0135 sec

FM1
FM2 3 4 6 8 9 12

3 -32 dB -29 dB† -24 dB -27 dB† -31 dB -28 dB
4 - -41 dB -38 dB† -30 dB -40 dB† -43 dB

(b)

Errors at t = 0.2 sec
FM↔SEM [ppw] ϵrel rms ϵrel ϵ∞

4↔ 4 0.5% - 0.2528
4↔ 8 1.3% 9.1% 0.0811
4↔ 12 2.4% 5.7% 0.0562

(c)

Table 1: Errors coupling the FM and the SEM using a sixth-order FDTD scheme for various spatial resolutions
determined by the points per wavelengths (ppw). The differentiated Gaussian source is injected half-way into the left
partition at xs = 2.5 m (similar errors is achieved injecting the source in the right SEM partition). (a) FM-SEM
interface errors, (b) FM-FM interface errors, c) Root-Mean-Square error ϵRMS, relative error ϵrel, and maximum error
ϵ∞ calculated by comparing with an exact Fourier reference solution. †: ∆t1 = ∆t2, since the spatial resolution is
not a multiple of each other.

8.2 Overall accuracy

Another investigation of the accuracy is to compare the simulation with a reference solution. The error of the impulse
responses (IRs) at receiver position x = 6.0 m is calculated in the relative Root-Mean-Squared ϵrel rms, relative error
ϵrel and the maximum error ϵ∞ norms

ϵrel rms(x) =
|psim,rms(x)− pref,rms(x)|

pref,rms(x)
,

ϵrel(x) =
1

T

T−1∑
n=0

|psim(tn, x)− pref(tn, x)|
pref(tn, x)

,

ϵ∞(x) = max
n=0,1,...,T−1

|psim(tn, x)− pref(tn, x)|,

(51)

where

prms(x) =

√√√√ 1

T

T−1∑
n=0

|p(tn, x)|2, (52)

(53)

is the Root-Mean-Squared (RMS). The simulated pressures psim(tn, x) and the reference pressures pref(tn, x) corre-
spond to the IRs at the receiver position x for the discrete time steps tn, and T = ⌈tmax/∆t⌉ is the total number of time
steps. The results are summarized in Table 1c. First, we notice that FM4-SEM4 gives the larges errors ϵ∞ = 0.25 and
very big relative errors (not included in the table). In contrary, coupling with SEM8 or SEM12 drastically improves
the accuracy with errors of ϵ∞ < 0.08 and ϵrel < 9%. These results are not all consistent with the interface errors, no-
tice for example that the FM4-SEM8 coupling (-36 dB) compared to FM4-SEM12 (-32 dB) has 4 dB lower reflection
errors, which indicates that the SEM is introducing numerical dispersion errors contributing to the overall error. Using
other time integration schemes, such as the Runge-Kutta method, should decrease the SEM numerical errors.
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Figure 7: h-Convergence plots: FM{2,4,8,16,32}-SEM{4,8,16,32,64} are plotted pair-wise in the two top-most
graphs, where 1) the temporal resolution is fixed for the blue graph, and 2) the temporal SEM resolution is twice
the FM resolution for the blue graph. The lower red graph 3) shows convergence according to polynomial order
P = 4 when oversampling 8 times the SEM P = 1 interface layer compared to the main SEM P = 4.

In Figure 6, the FM4-SEM8 and FM4-SEM12 results are plotted against the reference solution. The first row shows
the pressure in the domain at tmax = 0.2 s, the second and forth row show the IR and the transfer function (TF) at
receiver position x = 6.0 m and the third row shows the L1 IR errors over time. We see an excellent match between
the simulation and the reference, though with some small noticeable pressure perturbations in the wave propagation
plot (top) due to interface and SEM dispertion errors.

8.3 Convergence

In Figure 7 the convergence is plotted pair-wise for FM{2,4,8,16,32}-SEM{4,8,16,32,64} with 1) fixed temporal
resolution, 2) individual temporal resolution using Eq. (17), and 3) pair-wise for FM{16,32}-SEM{16-2,32-4} where
the SEM P = 1 interface layer is oversampled eight times compared to the main SEM with fixed temporal resolution.
When the P = 1 layer is finely oversampled, the spectral convergence is preserved, indicating that the interface errors
are converging at the same rate.

8.4 Efficiency

The theoretical speedup in 3D for a large FM-SEM domain ratio is 2 × x3, where x is the spatial resolution factor
between the FM and the SEM running in the two partitions, resulting in a 16× speedup for FM4-SEM8 and 54×
speedup for FM4-SEM12. The factor of 2 stems from the time resolution being twice as coarse for the FM. On top of
that, the SEM time complexity for solving the system of equations consisting of sparse band matrices can be done in
O(q2n) + O(qn) in time and O(n(2q + 1)) in memory using direct solvers, where q is the bandwidth of the matrix
and n is the degrees of freedom. The Fourier method is O(N log(N)) in time and n in memory when using the Fast
Fourier Transform.

We will perform an empirical evaluation of the efficiency gained from the FM-SEM coupling compared to running
the SEM in the entire domain for tmax = 0.2 s. The methods are implemented in Matlab, and the timings exclude
the matrix assembly. The vast majority of the time in the SEM is spent solving the linear system of equations and
is implemented using the Matlab backslash operator x = A\b for solving the linear system Ax = b. For the FM,
most of the work is spent in the Fourier transformation, where the build-in Matlab function ‘FFT’ is used. In all
experiments, we will compare against the baseline forth-order SEM with Neumann boundaries.
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FM4-SEM8 CPU timings for l = 50 m
FM partition size (r) FM solver SEM solver interface

50% 1.2% 84.9% 13.0%
80% 6.0% 53.6% 39.6%
95% 10.1% 18.5% 70.3%

Table 2

In the first experiment, we compare the CPU time separately for the FM and SEM running in the entire 1D domain of
lengths l = [6, 13, 25, 50] m, i.e. with no couplings. The result is shown in Figure 8a, and we see 3x to 71x speedups
depending on the domain size. The CPU times scale with O(l2) for the SEM and below the theoretical O(l log(l))
limit for the FM.

In the second experiment, we fix the domain size to 50 m and compare the CPU time for the FM-SEM coupling
for different Fourier partition sizes of r = [10, 20, 50, 70, 80, 90, 95] % relative to the entire domain. In Figure 8b
the results are depicted, and we achieve speedups between 2x and 17x for Fourier partition sizes above 50% with
scaling close to O(r3). In Table 2, the timings for l = 50 m are shown separately for the FM and SEM solvers
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CPU time: FM-SEM coupling in L=50 m domain
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Figure 8: CPU timings. a) Comparison between the FM and the SEM running in the full domain for different domain
sizes (no couplings), b) Comparison between FM-SEM and a baseline SEM with different relative FM partition sizes.

and the interface handling. We notice that the SEM workload for a 50/50 partition split is taking the 85% of total
computation time. Increasing the partition size of FM drastically decreases the SEM workload and for r = 95 %, the
workload of the interface handling starts dominating taking up 70% of the time. Most of the workload at the interface
is because of the space and time spline interpolation, though there is significant overhead when calling the interpolation
methods interpolating only a few points near the interface. In fact, interpolating all pressure values instead of only
the values around the interface has a minor impact on the absolute performance. Therefore, we expect more time-
efficient interpolations when extending to 2D and 3D, where much bigger pressure grids are to be interpolated near
the interface.

Conclusion

We have implemented an SEM and a FM coupled at the interface using a (2,6) FDTD scheme handling independent
spatial and temporal resolutions. Coupling the Fourier method using four points per wavelength with the SEM using
eight points per wavelength in a 5 m + 5m domain results in -36 dB interface errors and 9.1% relative errors compared
to a reference solution. Using 12 points per wavelength for the SEM gives slightly better relative errors of 5.7%. The
efficiency of the coupled method is compared against an SEM running in the entire domain. For a fixed domain size
of 50 m, the efficiency of the coupled method was compared for different relative FM partition sizes, with a 18 times
performance gain when 95% of the domain is running the FM. A more significant performance gain is expected to
be achieved when going to larger 2D and 3D domains due to more degrees of freedom to be handled by the SEM.
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However, the workload at the interface will also grow compared to 1D, but we expect it to still be negligible compared
to the saved computation time running the more expensive SEM solver.

Future work could consider the use of better time-stepping schemes, such as the Runge-Kutta methods, improving
the accuracy of the SEM method. A limitation of the implemented method is the need for an additional SEM layer
of first-order polynomials dominating the overall convergence rate. However, the layer is needed due to the shocks
arising from the enforced (non-physical) Neumann boundary condition at every time step, causing large errors in the
discrete Laplacian operator only for higher-order SEM. In [10] [Section 5.6], filtering methods have been proposed to
reduce the errors in the presence of shocks, and it should be investigated if this method can be applied to minimize the
errors.
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A Derivation of the update scheme described in terms of modes

Reinterpreting the wave equation in a discrete setting for the spatial dimensions and taking the cosine transform of
both sides of the equality sign yields

DCT(F (x, t)) = DCT
(
c2∇2p(x, t)− ∂2

∂t2
p(x, t)

)
(54)

= DCT
(
c2∇2p(x, t)

)
− DCT

(
∂2

∂t2
p(x, t)

)
(55)

= −c2k2iMi −
∂2

∂t2
Mi, (56)

Ignoring the forcing term, the above equation describes a set of independent simple harmonic oscillators, each vibrating
with its own characteristic frequency ωi = cki. We have used the iDCT from Equation (11), the Linearity Theorem
and the fact that the DCT of derivatives is given as DCT(f ′′(x)) = −k2f(k), since double-differencing the inverse
cosine transform, F−1, of F (x) gives

d2

dx2

√
2

π

∫
F (ω) cos(ωx)dω =

d

dx

√
2

π

∫
F (ω)

d

dx
cos(ωx)dω (57)

= −
√

2

π

∫
F (ω)ω

d

dx
sin(ωx)dω (58)

= −ω2

√
2

π

∫
F (ω) cos(ωx)dω (59)

= F−1(−ω2F (ω))⇒ (60)

F(f ′′(x)) = −ω2F (ω) (61)

B Derivation of the update scheme for a time-dependent source terms

By “reverse engineering” the final update scheme in [22], we notice that the time derivate has been multiplied by the
term ω2

i∆t2

2(1−cos(ωi∆t)) as

M
(n+1)
i − 2M

(n)
i +M

(n−1)
i

∆t2
ω2∆t2

2(1− cos(ωi∆t))
+ ω2

iM
(n)
i − F̃ (n)

i = 0 (62)

By taking a closer look at this term, we see that it evaluates to 1 + O(∆t2), since by doing a Taylor expansion of
cos(ωi∆t) around ∆t, we get cos(ωi∆t) = 1− 1

2 (ωi∆t) +O(∆t4):

ω2
i∆t

2

2(1− cos(ωi −∆t))
=

ω2
i∆t

2

2(1− 1 + 1
2 (ωi∆t) +O(∆t4))

(63)

=
ω2
i∆t

2

ω2
i∆t

2 +O(∆t4)
(64)

=
1

1 +O(∆t2)
(65)

= 1 +O(∆t2)→ 1, for ∆t→ 0 (66)

where 1
1+x = 1 + x + O(x2) has been used in the last step. Hence, multiplying the time derivative by these terms

corresponds to multiplying by 1, and since the truncation error is no greater than the error introduced by the centered
difference, this approximation is not making the solution worse. The term originates from the solution to the simple
simple harmonic oscillator ∂2M

∂t2 = −ω2
iM with the solution Mi(t) = C cos(ωit). Finally, we isolate M (n+1)

i giving
us the update equation

M
(n+1)
i = 2M

(n)
i cos(ωi∆t)−M (n−1)

i +
2F̃

(n)
i

ω2
i

(1− cos(ωi∆t)) (67)
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1 Introduction

The wave-based method (WBM) has been recognized to offer superior convergence compared to standard
boundary element methods and finite-element methods. The literature lacks theoretical convergence proofs,
and therefore an investigation examining its convergence compared to state-of-the-art methods, such as the
spectral-element method, and the results are presented in Section 6.

This note aims to provide a concise overview of the WBM, drawing from relevant literature sources [?,?,?,?].
Additionally, the Green’s function solution to the Helmholtz equation is presented in this text, serving as a
means to validate the solutions.

2 Problem formulation

The WBM is designed for solving steady-state problem described by the Helmholtz equation

∇2p(r) + k2p(r) = f(r), r ∈ Ω (1)

where ∇2 is the Laplacian, p(r) is the pressure field variable of the Helmholtz equation, k = ω/c is the wave
number, c the speed of sound, f(r) is the forcing function and Ω is the problem domain. Consider the bounded
domain Γ = ∂Ω depicted in Figure (1) divided into three non-overlapping parts Γ = Γv ∪ Γp ∪ ΓZ , where the
following boundary conditions apply

r ∈ Γv : Lv(p(r)) = v̄n(r) (2a)

r ∈ Γp : p(r) = p̄n(r) (2b)

r ∈ ΓZ : Lv(p(r)) =
p(r)

Z̄(r)
(2c)

where v̄n(r), p̄n(r) and Z̄(r) are the imposed normal velocity (Neumann), pressure (Dirichlet) and normal
impedance at the boundaries, respectively and the normal velocity operator Lv is defined as

Lv(•) =
j

ρω

∂•
∂n

=
j

ρω
(n)T∇(•) (3)

x

y

ΓZΓp

Γv

r p

Ω

Figure 1: Domain consisting of three boundary types (pressure, velocity, impedance)

3 Greens function

We will compare our simulations to the Green’s function to the Helmholtz equation using a point source as
forcing function modelled by the dirac delta function δ(·). The Helmholtz equation with the point source in r0
is then

∇2p(r) + k2p(r) = −δ(r− r0) (4)

for which the analytical solution in an enclosure is given by the Greens function [?]

G(r, r0) = − 1

V

∑
m

ψm(r)ψm(r0)

k2 − k2m
(5)
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For Neumann boundary conditions, ψN is given as

ψN (x, y) =
√
ϵnxϵny cos

(
nxπx

lx

)
cos

(
nyπy

ly

)
(6)

and for Dirichlet boundary conditions as

ψN (x, y) =
√
ϵnx

ϵny
sin

(
nxπx

lx

)
sin

(
nyπy

ly

)
(7)

where lx and ly are the domain size in x and y, respectively, nx, ny are wave function index 0, 1, 2, .., the term

√
ϵnx

ϵny
is a normalization constant with ϵm = 1 form = 0 and ϵm = 2 form > 0 and k2m =

√(
nxπ
lx

)2
+
(

nyπ
ly

)2
is the wave number for the modes/natural frequencies in the enclosure. N is representing the two integers nx, ny
as
∑N

m =
∑∞

nx=0

∑∞
ny=0.

4 The spectral-element method

The SEM is derived for approximating the solution to the Helmholtz equation with the aim of coupling with
the WBM. The derivation follows the receipe from the lecture notes in [?].

4.1 Helmholtz derivation

We represent the problem formulation of (1) in weak form by applying integration by parts

−
∫
Ω

∂p

∂x

∂v

∂x
dx−

∫
Ω

∂p

∂y

∂v

∂y
dy +

∫
Ω

∫
Ω

k2pvdxdy =

∫ ∫
Ω

fvdxdy (8)

where v(x, y) is a test function chosen such that it vanishes at the endpoints. A truncated series expansion for
the unknown variable p is introduced

p(x, y) ≈ p̂(x, y) =
K∑
i=1

p̂iNi(x, y) (9)

where Ni(x, y) is the set of global finite element basis functions chosen as Lagrange polynomials. Insert Eq. (9)
for p into Eq. (8), set the test function v(x, y) equal to each of the basis functions for Nj(x, y) and collect the
terms into Ap̂ = b. The matrix A can then be written

A(n) = k2M(n) − S(n) (10)

where M(n)
i,j and S(n)

i,j are the mass and stiffness matrices, respectively, for the (i, j) indexes of the n’th element

M(n)
ij =

∫ ∫
en

N
(n)
i (x, y)N

(n)
j (x, y)dxdy

S(n)
x,ij =

∫
en

∂N
(n)
i (x, y)

∂x

∂N
(n)
j (x, y)

∂x
dx (11)

S(n)
y,ij =

∫
en

∂N
(n)
i (x, y)

∂y

∂N
(n)
j (x, y)

∂y
dy

The integrations in (11) can be calculated exact without resorting to e.g. Gaussian quadratures. It is convenient
to introduce a reference triangle element [?]

I = {(r, s)|(r, s) ≥ −1 ≤ r, s; r + s ≤ 0}
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The nodal Lagrange basis functions Nn(r, s) can be determined on the reference element I using the Vander-
monde matrix V

Nn(r, s) =

P+1∑
n=1

(
VT
)−1

i,n
ψn(r, s) (12)

where ψn(r, s) are modal Legendre polynomials and the nodal distribution of the collocation points r, s of the
reference element is of the Legrende-Gauss-Lobatto (LGL) kind. Inserting the above into the expression for the
mass matrix in (11), but on the reference element yields

M = (VVT )−1 (13)

where V is the Vandermonde matrix. The mapping from the local reference element I to the global element en
on (x, y) in 11 is

M(n)
ij =

∫ ∫
en

N
(n)
i (x, y)N

(n)
j (x, y)dxdy =

J n

∫ ∫
I
N

(n)
i (r, s)N

(n)
j (r, s)drds

(14)

where J n is the Jacobian mapping from local to the global element n as (x, y) → (r, s). Regarding the stiffness
matrix, we use

∂

∂r
Ni(r, s) =

P+1∑
n=1

∂

∂r
Ni(rn, sn)Nn(r, s) (15)

and inserting the above term into the expression for the stiffness matrix, but (again) on the reference element
yields

Sr = DT
r MDr, Ss = DT

s MDs (16)

where Dr is the differentiation matrix

Dr = VrV−1 (17)

The mapping from the reference element to the global element n for the stiffness matrix is again done using the
Jacobian J n

S(n) = J nDT
xMDx + J nDT

y MDy (18)

where
Dx = rxDr + sxDs, Dy = ryDr + syDs (19)

and rx, ry, sx, sy are geometrical factors. To summarize, the mass and stiffness matrices for the n’th element
can be calculated as

M(n) = J (n)(VVT )−1, S(n) = J (n)DT
xMDx (20)

Similarly, for the elements of b resulting from the forcing function, we get the local constribution for element
n as

b(n) =

∫ ∫
en
fvdxdy = M(n)f (n) (21)

4.2 Point source implementation

In applications concerned with far-field properties of the pressure field, the point source can be used as source
function [?]

f(x, y) = δ(x− x0, y − y0) (22)
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where (x0, y0) is the coordinate of the point source and δ(·) is the delta function. The most straightforward
implementation is to avoid the integration derived in 21 for the right hand-side source term in the weak
formulation 8 and instead exploit the properties of the integration of Dirac delta functions as∫ ∫

Ω

f(x, y)Ni(x, y)dxdy =

∫ ∫
Ω

δ(x− x0, y − y0)Ni(x, y)dxdy = Ni(x0, y0) (23)

which on the reference element corresponds to the Lagrange polynomial calculated using Eq. (12) repeated here

Nn(r, s) =
P+1∑
n=1

(
VT
)−1

i,n
ψn(r, s)

Remember that the Vandermonde matrix is defined as

Vij = ψj(ri), 1, . . . , P + 1 (24)

where ψj(ri) are the modal Legendre polynomials evaluated on the Legrende-Gauss-Lobatto nodes. Therefore

Ni(rj) = δij (25)

due to the properties of the Lagrange polynomials. Exploiting the result in 25 makes the point source imple-
mentation simple. The right-hand side corresponding to the expression in Eq. (21) but for point sources is
then

N (n) = J (n)N (26)

It follows that in case the point source coincides with a grid point (not GLL points inside an element), only
one coefficient will be non-zero. In the implementation it is ensured that a point source will always coincide
with a grid point.

4.3 Pressure level

The point source is modelled as the Dirac Delta δ equal to zeros everywhere except at x = 0 and the integral
over the entire area is equal to 1

∫
δ(x)dx = 1. In practice, we set the amplitude at x = 0 to 1, but this means

that the energy injected will depend on the grid resolution: remember that only one grid point is non-zero and
depending on the element size, the elements sharing this grid point might not integrate to 1.

Pressure adjustment

To ensure a normalized injected energy, the amplitude of the point source should be adjusted such that the
elements sharing the grid point of the source integrates to 1. Replacing the Jacobian factor J in Eq. (26) has
worked for specific grid sizes, but no general solution has been found.

Ad hoc normalization

The solution for normalizing the pressure to the analytical Greens function has been done ad hoc by finding the
highest pressures in the simulated and analytical solution and calculating the ratio R. The ratio is multiplied
to all pressure values in the simulation. Calculating the mean of the differences has been tried out, but with
less good results.

4.4 Mesh

Mesh creation with more resolution around the point source has been implemented using the meshing tool
‘DistMesh‘. An example can be seen in Figure 2.
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Figure 2: Refined mesh at point source location.

4.5 Grid resolution

The spatial resolution is dependent on the maximum simulation frequency. We have the following relations
between wavelength λmin, domain size l, number of modes M and max frequency fmax

λmin =
c

fmax
, (27a)

∆x =
λmin

N
× P, (27b)

where N is the number of points per wavelength and P is the polynomial order. The numerical simulation
needs more points per wavelength that what the Nyquist Theorem states, typically between 5 and 15 points
per wavelength.

5 WBM modelling

The procedure for solving the Helmholtz equation consists of four steps

1. Partition the problem into convex subdomains

2. Selection of a suitable set of wave functions for each subdomain

3. Construct and solve the system of matrices yielding the wave function contribution factors

4. Postprocessing of the dynamic variables

5.1 Domain partitioning into convex subdomains

Convexity is a sufficient condition for the WB approximation to converge towards the exact solution and hence
non-convex domain Ω should be partitioned into convex non-overlapping subdomains as depicted in Figure 3

where Ω(α), α = 1, . . . , NΩ and let Γ
(α,β)
I being the interface between two subdomains Ω(α) and Ω(α) such that
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x

y

ΓZ(β)Γp(α)
ΓI(α,β)

Γv(β)

Ω(α) Ω(β)

Figure 3: Domain partitioning

the a continuity condition is imposed on the interface. Pluymers [?] has shown that impedance coupling has
better stability over directly enforcing pressure/velocity coupling

r ∈ ΓI :

(
L(α)
v (p(α)(r))− p(α)(r)

Z̄I(r)

)
= −

(
L(β)
v (p(β)(r)) +

p(β)(r)

Z̄I(r)

)
(28)

5.2 Wave functions

The steady-state fields p(r) in each subdomain are approximated by a solution expansion p̂w(r) in terms of the
nw number of wave functions ϕw for an α partition

p(α)(r) ≃ p̂(α)(r) =

n(α)
w∑

w=1

p(α)w ϕw(r)
(α) + p̂(α)q (r) = Φ(α)(r)p(α)

w + p̂(α)q (r), (29)

where p̂
(α)
q (r) represents a particular solution resulting from the forcing term in the Helmholtz equation, and r

are the spatial coordinates. Each wave function ϕ(r) exactly satisfies the homogeneous part of the Helmholtz
equation.

There are two choices of wave functions for 2D bounded domains, the r- and s-set

n(α)
w∑

w=1

p(α)w ϕ(α)w (r) =

n(α)
wr∑

wr=1

p(α)wr
ϕ(α)wr

(r) +

n(α)
ws∑

ws=1

p(α)ws
ϕ(α)ws

(r) (30)

The wave functions are defined as

ϕ(α)w (r) =

{
ϕ
(α)
wr (x, y) = cos(k

(α)
xwrx)e

−jk(α)
ywr

y,

ϕ
(α)
ws (x, y) = e−jk(α)

xws
x cos(k

(α)
ywsy)

(31)

The only requirement for Eq. (31) to be an exact solution to the Helmholtz equation is, that the wave numbers
satisfy

(k(α)xwr
)2 + (k(α)ywr

)2 = (k(α)xws
)2 + (k(α)yws

)2 = k2

There are infinitely many solutions for the above relation, but the following have been proposed

(k(α)xwr
, k(α)ywr

) =

(
w

(α)
1

L
(α)
x

,±
√
k2 −

(
k
(α)
xwr

)2)

(k(α)xws
, k(α)yws

) =

(
±
√
k2 −

(
k
(α)
yws

)2
,
w

(α)
2

L
(α)
y

,

)

L
(α)
x and L

(α)
y are the dimensions of the smallest box surrounding the subdomain as depicted in Fig. 4, k = ω/c,

ω being the angular frequency, and w1 = w2 = 0, 1, . . .. This choice of wave functions leads to standing and
evanescent waves.
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Figure 4: Domain enclosed by the smallest box. Figure from [?].

5.2.1 Truncation

In order to apply the WB formulation in a numerical scheme, the wave numbers w1 and w2 should be bounded
and hence truncating the wave functions. A linear, frequency-dependent truncation rule is suggested, where
wave functions that have wave number components smaller or equal a factor N times the physical wave number
k are added to the wave function basis set

w
(α)
1max

L
(α)
x

≃ Nk ⇒ w
(α)
1max

= ⌈L(α)
x Nk⌉

w
(α)
2max

L
(α)
y

≃ Nk ⇒ w
(α)
2max

= ⌈L(α)
y Nk⌉

where w1max , w2max ∈ N and hence

w1 ∈ [0, 1, . . . , w1max
] and w2 ∈ [0, 1, . . . , w2max

]

The total number of wave functions in Eq. (30) is n
(α)
w = n

(α)
wr + n

(α)
ws in subdomain Ω(α) with

n(α)wr
= 2(w1max

+ 1)

n(α)ws
= 2(w2max

+ 1)

5.2.2 Scaling

Some of the wave functions are oscillatory in all (2) dimension and are restricted in the interval [−1, 1], whereas
other wave functions are evanescent in one of the dimensions with amplitudes larger than 1. From an imple-
mentation point of view, scaling factors fywr and fxws are introduced to restrict all wave functions amplitudes
below 1. {

ϕ
(α)
wr (x, y) = cos(k

(α)
xwrx)e

−jk(α)
ywr

(y−fywrLy),

ϕ
(α)
ws (x, y) = e−jk(α)

xws
(x−fywsLx) cos(k

(α)
ywsy)

(32)

5.2.3 Particular solution

The term p̂q in Eq. (29) is resulting from the source term q in the inhomogeneous Helmholtz equation (1) and
can be represented as the free-field solution of a point source

p̂q(x, y) =
ρωQ

4
H

(2)
0 (krq) (33)
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where Q =
∫
V
qdV is the source strength, H

(2)
0 is the zero-order Hankel function of second kind and rq =√

(x− xq)2 + (y − yq)2 the distance to the source point.

5.3 Formulation of residuals

The solution expansion in Eq. (29) is always an exact solution to the Helmholtz equation (1) irrespective of the
unknown wave function contribution factors pw. To determine the values of these contributions, the boundary
conditions (2a-2c) must be taken into account, introducing approximations to the solutions. Hence, there are
no residuals involved for the partial differential equation (for the inner domain), only residuals R(•) exists for
the boundary and interface modelling

r ∈ Γv : Rv(r) = L(p̂(r))− v̄n(r), (34a)

r ∈ Γp : Rp(r) = p̂(r)− p̄(r), (34b)

r ∈ ΓZ : RZ(r) = L(p̂(r))− p̂(r)

Z̄n(r)
, (34c)

where again v̄n(r), p̄(r) and Z̄n(r) are the imposed normal velocity (Neumann), pressure (Dirichlet) and normal
impedance at the boundaries, respectively.

5.4 Weighted residual formulation

For each subdomain, the boundary residuals (34a-34c) are orthogonalised with respect to a weighting function
p̃ or its derivative as∫

Γ
(α)
v

p̃(α)(r)R(α)
v (r)dΓ +

∫
Γ
(α)
p

p̃(α)(r)R(α)
p (r)dΓ +

∫
Γ
(α)
Z

−L(p̃(α)(r))R(α)
Z (r)dΓ = 0 (35)

The weighting function p̃(α)(r) is expanded in terms of the same set of acoustic wave functions used in the
pressure expansion (29)

p̃(α)(r) =

n(α)
w∑

a=1

p̃(α)a ϕ(α)a (r) = Φ(α)(r)p̃(α)
w (36)

5.5 System of linear equations

Substitution of the pressure expansion from Eq. (29) and the weighting function (36) for subdomain Ω(α) into
the weighted residual formulation (35) result in a set of nw linear equations for each of the unknown wave
functions

Apw = f (37)

given as

A(α) = A
(α)
p +A

(α)
v +A

(α)
Z , (n

(α)
w × n

(α)
w ) with

A(α)
v =

∫
Γ
(α)
v

j

ρω
Φ(α)Tn(α)TB(α)dΓ (38a)

A
(α)
Z =

∫
Γ
(α)
Z

(
j

ρω
Φ(α)Tn(α)TB(α) − 1

Z̄n
Φ(α)TΦ(α)

)
dΓ (38b)

A(α)
p =−

∫
Γ
(α)
p

j

ρω
B(α)Tn(α)Φ(α)dΓ (38c)

B (2× n
(α)
w ), collecting the gradient components of the acoustic wave function Φ(α)

B = ∇Φ(α) (39)

9



(a) WBM convergence as a function
of wave functions Nw = Nwr +
Nws = 8, 28, 48, . . . , 608 compared
against SEM.

(b) SEM convergence as a function of
elements compared against SEM.

(c) Green’s function convergence as a
function of total number of wave func-
tions Nwx = Nwy = 4, 104, . . . , 1004
per dimension compared against SEM.

Figure 5: L2 convergence rate for ROIs using WBM, SEM and Green’s.

f (α) = f
(α)
v + f

(α)
p + f

(α)
Z , (n

(α)
w × 1)

f (α)v =

∫
Γ
(α)
v

Φ(α)T

(
v̄(α)n − j

ρω
n(α)T∇p̂(α)q

)
dΓ (40a)

f
(α)
Z =

∫
Γ
(α)
Z

Φ(α)T

(
p̂
(α)
q

Z̄n
− j

ρω
n(α)T∇p̂(α)q

)
dΓ (40b)

f (α)p =

∫
Γ
(α)
p

j

ρω
B(α)Tn(α)

(
p̂(α)q − p̄(α)

)
dΓ (40c)

See more details in [?,?].

5.6 Solution and postprocessing

After solving (37) for pw, the values are inserted back into the expansion in (29) yielding an approximation p̂
of the acoustic pressure field. Derived acoustic fields can easily be obtained as well (see [?]).

6 Results

We compare the convergence rate solving the Helmholtz equation for perfectly reflecting boundaries with energy
injected as a point source for 1) the Green’s function, 2) the WBM, and 3) the Spectral Element Method (SEM).
The convergence rate is examined in the full domain including boundaries and for the inner domain neglecting
points near the boundary and the results can be seen in Figure 5. For all experiments we exclude points within
a radius of r = 0.4 meters from the singularity in the source point. The reference solution is constructed using
the SEM on a fine grid. We are calculating the steady-state solution atfmax = 300 Hz with point source location
sxy = (1.2, 1.2) m and domain size lx = ly = 2m. We have investigated the convergence rate for the WBM,
the SEM, and Green’s function in RIOs to get insights about challenging parts. SEM shows convergence in
accordance with theory for all ROIs. WBM has a 4th order convergence (L2 error norm) when disregarding
boundaries, corresponding to SEM using 3rd order polynomials. Green’s function has a slow convergence of 1st
order when disregarding the boundaries and axial directions, where an even slower convergence is observed.

Modeling pressure fields exited by point sources might be more challenging due to the abrupt injection,
leading to highly oscillating waves. This requires more wave functions to capture the physics. A similar issue
with degraded convergence has been observed when piston radiation from a boundary happens, resulting in
discontinuous boundary conditions [?].
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SEM does an excellent job, showing convergence rates according to theory. Though, calculating the first
reflection using the (Green’s) analytical solution (similar to BEM/WBM; sometimes known as ‘background
pressure field’ in the literature) and injecting the resulting pressure as boundary conditions could increase the
quality.

7 Multi-domain WBM

Two different methods can be used when coupling two WBM domains at the interface ΓI : i) directly enforce
pressure continuity on one subdomain and normal continuity on the other subdomain formulated or ii) apply
impedance continuity conditions. The formulation w.r.t. pressure/normal continuity i) is given as

normal vel. cont. r ∈ Γ
(α,β)
I : L(α)

v (p̂(α)(r)) = −L(β)
v (p̂(β)(r)) (41a)

pressure cont. r ∈ Γ
(α,β)
I : p̂(α)(r) = p̂(β)(r) (41b)

The impedance continuity condition ii) is given as

r ∈ Γ
(α,β)
I : L(α)

v (p̂(α)(r))− p̂(α)(r)

Z̄I(r)
= −L(β)

v (p̂(β)(r)) +
p̂(β)(r)

Z̄I(r)
(42)

7.1 Formulation of residuals

The interface residuals error functions are given as

r ∈ ΓI,v : R
(α,β)
I,v (r) = L(α)

v (p̂(α)(r)) + L(β)
v (p̂(β)(r)) (43a)

r ∈ ΓI,p : R
(α,β)
I,p (r) = p̂(α)(r)− p̂(β)(r) (43b)

r ∈ ΓI,imp : R
(α,β)
I,imp(r) =

(
L(α)
v (p̂(α)(r))− p̂(α)(r)

Z̄I(r)

)
+

(
L(β)
v (p̂(β)(r))− p̂(β)(r)

Z̄I(r)

) (43c)

7.2 Weighted residual formulation

Similar to the construction of system matrices in previous sections, for each subdomain, the pressure/normal
continuity interface residuals (43b-43a) (the impedance continuity interface residual (43c) is not considered for
now) are orthogonalised with respect to a weighting function p̃ or its derivative as

NΩ∑
β=1,β ̸=α

∫
Γ
(α,β)
I,v

p̃(α)(r)R
(α,β)
I,v (r)dΓ

+

NΩ∑
β=1,β ̸=α

∫
Γ
(α,β)
I,p

−L(α)
v (p̃(α)(r))R

(α,β)
I,p (r)dΓ = 0

(44)

The weighting function p̃(α)(r) is expanded in terms of the same set of acoustic wave functions used in the
pressure expansion (29)

p̃(α)(r) =

n(α)
w∑

a=1

p̃(α)a ϕ(α)a (r) = Φ(α)(r)p̃(α)
w (45)

For a multi-domain WB formulation, the above integrals in (44) are included in the weighted residual
formulation (29).
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7.3 System of linear equations

Substitution of the pressure expansion from Eq. (29) and the weighting function (45) for subdomain Ω(α) into
the weighted residual formulation (44) and (35) from previous section yields a slightly more complicated system
of equations compared to (37), since we now have to include formulations for the NΩ number of coupled WB
subdomains: 

A(1) C(1,2) C(1,3) . . . C(1,NΩ)

C(2,1) A(2) C(2,3) . . . C(2,NΩ)

...
C(NΩ,1) C(NΩ,2) C(NΩ,3) . . . A(NΩ)




p
(1)
w

p
(2)
w

...

p
(NΩ)
w

 =


b(1)

b(2)

...
b(NΩ)

 (46)

where

A(α) = A
(α)
p +A

(α)
v +A

(α)
Z +A

(α)
Ip +A

(α)
Iv (n

(α)
w × n

(α)
w ) with

A
(α)
Ip =−

∫
Γ
(α)
Ip

j

ρω
B(α)Tn(α)Φ(α)dΓ (47)

A
(α)
Iv =

∫
Γ
(α)
Iv

j

ρω
Φ(α)Tn(α)TB(α)dΓ (48)

(49)

C(α,β) (nα × nβ), is a non-zero matrix only if the two domains Ω(α) and Ω(β) are adjacent and share an
interface

C(α,β) =

∫
Γ
(α,β)
I,p

j

pω
B(α)Tn(α)Φ(β)dΓ

+

∫
Γ
(α,β)
I,v

j

pω
Φ(α)Tn(β)TB(β)dΓ (50)

f (α) = f
(α)
v + f

(α)
p + f

(α)
Z + f

(α)
Ip − f

(α)
Iv (n

(α)
w × 1)

f
(α)
Iv =

∫
Γ
(α)
Iv

Φ(α)T

(
j

ρω
n(α)T∇p̂(α)q

)
dΓ (51)

f
(α)
Ip =

∫
Γ
(α)
Ip

j

ρω
B(α)Tn(α)p̂(α)q dΓ (52)

f (α,β) (n
(α)
w × 1), is a non-zero matrix only if the two domains Ω(α) and Ω(β) are adjacent and share an

interface

f (α,β) =−
∫
Γ
(α)
Ip

j

ρω
B(α)Tn(α)p̂(β)q dΓ

−
∫
Γ
(α)
Iv

Φ(α)T

(
j

ρω
n(β)T∇p̂(β)q

)
dΓ (53)

b(α) dimension (n
(α)
w × 1) being the force

b(α) = f (α) +

NΩ∑
β=1,β ̸=α

f (α,β) (54)
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Figure 6: FE and WB domain coupling. Figure from [?].

We write it in compact form as
Apw = b (55)

For more details see [?] p. 67-70.

8 The Hybrid FE-WBM

For a direct pressure and velocity coupling at the interface ΓH between the FEM and the WBM are given
similar to Eq. (41b-41a) (see Figure 6

r ∈ ΓH :vfe(r) = −vw(r) (56)

r ∈ ΓH :pw(r) = pfe(r) (57)

8.1 Formulation of residuals

The interface residuals error functions are given as

r ∈ ΓI,v : R
(w,fe)
H,v (r) = L(w)

v (p̂w(r)) + L(fe)
v (p̂fe(r)) (58)

r ∈ ΓI,p : R
(w,fe)
H,p (r) = p̂w(r)− p̂fe(r) (59)

remembering that the normal velocity operator Lv is defined as

L(fe)
v (•) = j

ρω

∂•
∂nfe

=
j

ρω
(nfe)

T∇•

L(w)
v (•) = j

ρω

∂•
∂nw

=
j

ρω
(nw)

T∇•

with nfe = [nfex , nfey ] and nw = [nwx , nwy ] being the normal to the FE and WE interface, respectively.

8.2 Weighted residual formulation

The pressure continuity condition Eq. (56) is imposed on the WB boundary as the pressure boundary condition
and is added to the weighted residual formulation Eq. (35)∫

ΓH,p

−L(w)
v (p̃w(r))R

(w,fe)
H,p (r)dΓ (60)

and the velocity continuity condition Eq. (57) is imposed on the boundary of the FE domain as the velocity
boundary condition and is added to the weighted residual formulation Eq. (35)∫

ΓH,v

−p̃fe(r)R(w,fe)
H,v (r)dΓ (61)
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where each of the weighting functions p̃wb(r) and p̃fe(r) are expanded with the same set of acoustic wave
functions used in the pressure expansion as

p̃
(α)
fe (r) =

n
(α)
fe∑

a=1

p̃
(α)
fe,aN

(α)
a (r) = N (α)(r)p̃

(α)
fe (62a)

p̃
(α)
wb (r) =

n(α)
w∑

a=1

p̃(α)a ϕ(α)a (r) = Φ(α)(r)p̃(α)
w (62b)

For more details see [?] p. 204-205).

8.3 System of linear equations

The following equation system is constructed[
Sfe Qfw

Qwf Sw

]{
pfe

pw

}
=

{
ffe + ffw
bw + cb

}
(63)

with ntot = nfe + nw degrees of freedom and

Qwf =

∫
ΓH

j

ρω
BTnwNfedΓ, (nw × nfe) coupling matrix

Qfw =

∫
ΓH

(Nfe)
T · (nw)

TBdΓ (nfs × nw) coupling matrix

Cb =−
∫
ΓH

j

ρω
BTnwΦdΓ, (nw × nfe) WB back-coupling matrix

cb =

∫
ΓH

j

ρω
BTnwdΓ, (nw × 1) WB back-coupling vector

ffw =−
∫
ΓH

(Nfe)
T · (nw)

T∇p̂qdΓ (nfe × 1) loading vector on the FE

Sw = A+Cb (nw × nw) system and back-coupling matrix

For more details, see [?] p. 205 and [?].

9 Solution of the coupled model

The system of equation in Eq. (63) is populated as follows

Sfe is a typical symmetric, sparsely populated banded structured FE matrix

Sw results from the WB system matrix and the WB back-coupling matrices Sw = A+Cb. Densely populated,
but in general much smaller than Sfe.

Q• are sparsely populated rectangular matrices since the matrices are non-zero only if twoWB-FE subdomains
are adjacent.

A three-step procedure has been proposed:

1. Isolate pfe from the top part of matrix equation (63)

pfe = S−1
fe (sfe −Qfwpw) (64)

2. Substitute pfe into the bottom part of the matrix equation (63)

(−QwfS
−1
fe Qfw + Sw)pw = sw −QwfS

−1
fe sfe (65)
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3. Introduce two sparse linear systems which can be solved efficiently for H and h using sparse solvers

SfeH = Qfw (66a)

Sfeh = sfe (66b)

Note that the above equations have identical left-hand side matrices, allowing LU decomposition solving
both equations at the same time.

4. Rewrite Eq. (65) in terms of H and h and solve for pw with a dense solver

(−QwfH+ Sw)pw = sw −Qwfh (67)

5. The eliminated pfe nodal dofs are retrieved by matrix multiplications. Isolating H and h in Eq. (66a)
and (66b), respectively, and inserting into (64) yields

pfe = −Hpw + h
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