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Abstract

We present a software system for simulating the lower frequency sound field in
real-time using the FDTD method. The FDTD method is a numerical method
for solving the wave equation by approximating the time and space derivatives
by finite-differences. With the goal of achieving real-time performance, the
FDTD method was implemented using CUDA on the GPU.

A family of 3-D non-staggered compact explicit FDTD schemes have been imple-
mented incorporating a frequency-dependent boundary model that is consistent
with locally reacting surfaces, taking the full 3-D wave field into account. The
boundaries are modelled using digital impedance filters (DIFs), realised as IIR
filters. Three GPU versions have been implemented using CUDA, with differ-
ences in the number of kernels used.

The physical correctness of the FDTD method has been compared with the FEM
method for cubic rooms using seven FDTD schemes with frequency-dependent
and -independent boundaries. In general, the results showed good correspon-
dence between the sound fields simulated with the FEM and FDTD methods,
when less than 2% of dispersion errors are allowed. The Standard Leapfrog
method introduces fewest errors (less than 0.3 dB) and the Interpolated Dig-
ital Waveguide Mesh method introduces the most errors (less than 0.7 dB).
The precision was also studied when oblique boundaries are present, and when
discretisation errors due to meshing the scenes are introduced.

A performance test was done for three selected schemes in different environ-
ments, and it was shown that real-time simulations below the Schröder frequency
is possible.
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Resumé

Vi præsenterer et software system, der ved brug af FDTD metoder kan simulere
det nedre frekvenslydfelt i real-time. FDTD metoden er en numerisk metode,
der løser bølgeligningen ved at approksimere de spatiale og temporale afledte
med endelige differenser. FDTD metoderne er blevet implementeret p̊a GPU’en
ved brug af CUDA med henblik p̊a real-time simulering.

En familie af 3-D ikke-forskudte kompakte eksplicitte FDTD skemaer er blevet
implementeret, indbefattende en frekvens-afhængig grænsemodel konsistent med
lokalt reagerende overflader, og som tager højde for den fulde 3-D bølgemodel.
Grænsemodellen er modelleret ved brug af digitale impedansfiltre (DIFs) for-
muleret som IIR filtre. Tre GPU versioner er blevet implementeret med varia-
tioner i antallet af kerner.

Den fysiske korrekthed af FDTD metoden er blevet sammenlignet med FEM
simuleringsmetoden for syv FDTD skemaer i rektangulære rum for frekven-
safhængig og -uafhængig grænseabsorbering. Resultaterne viste generelt en god
overensstemmelse mellem lydfelterne simuleret med FDTD og FEM metoderne,
n̊ar mindre end 2% dispersionsfejl tillades, hvoraf standard leapfrog metoden
introducerer færrest fejl (mindre end 0.3 dB) og Interpolated Digital Waveg-
uide Mesh metoden introducerer flest fejl (mindre end 0.7 dB). Præcisionen er
blevet undersøgt, n̊ar skr̊a kanter er til stede, samt n̊ar diskretiseringsfejl under
sammenvævningen af den originale scene er introduceret.

En hastighedstest er blevet udført i forskellige miljøer for tre udvalgte skemaer,
og det er p̊avist at real-time simuleringer under Schroeder frekvensen er mulig.



iv Resumé
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Chapter 1

Introduction

Nowadays, most real-time auralisation systems are using efficient geometrical
acoustics (GA) for modelling the sound field. GA has been used for precise
modelling of room acoustics and is computationally inexpensive. The limitation
of such methods is that they are only capable of modelling the higher frequencies
above the virtual Schroeder frequency. In Virtual Reality (VR) systems, it is
important to give the user a realistic perception of the environment in terms of
graphics and sound, and therefore – concerning the sound – the whole frequency
range should be modelled. In big rooms, such as concerts hall, the Schroeder
frequency is very low making GA sufficient to modelling the audible frequency
range, but in smaller environments, such as cars, the lower frequency range must
be modelled for physical realistic room acoustics. To the author’s knowledge,
no previous work has investigated the physical correctness of simulations of the
lower sound field in complex environments for numerical methods capable of
performing in real-time.

In the following section, the reader will briefly be introduced to commonly used
methods in the field of room acoustics and a literature review of important
work in the field of numerical acoustics including Finite-Difference Time-Domain
(FDTD) methods and Digital Waveguide Meshes (DWGM) will be given. The
objective of the thesis is clarified, and finally a thesis overview is given.



2 Introduction

1.1 Related Work

1.1.1 Geometrical Acoustics

The algorithms of typical programs for simulation of sound in rooms are based
on geometrical acoustics and model the acoustical effects by applying ray theory.
The description of the sound field is reduced to energy, transition time and the
direction of rays. This approach is correct under the assumption that the sound
wavelengths are significantly smaller than the dimension of the room and the
size of obstacles in the environment.

These geometrical methods originate from similar methods used in computer
graphics, and are used for finding significant paths from sources to receivers,
along which sound can travel. Mathematical models are used to modify the
emitted sound waves along each path by approximating filters corresponding to
the characteristics of the room. The impulse response constructed for each of
the paths can be considered in three parts (Vorländer, 2007): 1) direct sound
representing the earliest arriving sound wave, 2) early reflections describing the
sound waves arriving within the first milliseconds of the impulse response, and 3)
late reverberation. The early reflections contain the most information about the
room because of their relatively high strength, recognisable directionalities and
distinct arrival times. In the late reverberation phase, the sound has reflected
many surfaces in the environment to the extend the human ear is no longer able
to distinguish the reflections independently.

Common practice is to use geometrical methods to find early reflections and
use statistical methods for the late reverberation, since the error in geometri-
cal approximation and computational complexity increase with larger number
of reflection and diffraction. We can roughly divide the GA methods into ray-
tracing, image sources and hybrid methods. In ray tracing methods, sound is
radiated as a number of particles from a source to a receiver. These rays of
particles are then followed through the environment until an appropriate set
of rays has been found that reaches the representation of the receiver position.
Image source methods compute specular reflections by introducing virtual im-
age sources, where the source is mirrored at all wall planes recursively, creating
image sources of higher order, and an “audibility test” is performed for all image
sources detecting whether the image sources represent a specular reflection path
to the source. Ray tracing has the advantage of being able to capture various
kinds of reflections, but introduces aliasing and errors due to the discrete ap-
proximation of the continuous space of rays, whereas image sources guarantee
that all reflection paths up to a given order are found, but only models spec-
ular reflections and comes with exponential computational complexity. Hybrid
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image source methods combine these two approaches to obtain a finer tempo-
ral resolution in the sampling rate, a faster audibility check of sources and the
ability to handle scattering.

The limitation of these methods is, that diffraction and scattering are not in-
corporated by the basic formulation and is hard to implement. Furthermore,
only diffuse sound fields can be modelled, making it impossible to capture the
modes of the waves present below the Schroeder frequency.

1.1.2 Finite-Difference Time-Domain Methods

The Finite-Difference Time-Domain (FDTD) method was originally proposed
by (Yee, 1966) for electromagnetic simulations and employs finite differences
as approximation to both the spatial and temporal derivatives that appears
in Maxwell’s equation. Botteldooren (Botteldooren, 1995) was the first to use
FDTD methods in the field of acoustics, computing the sound pressure and
velocity directly in discrete time steps by approximating the Laplacians and
time-derivative by finite differences, making the modelling of transient acoustic
properties easily feasible. He demonstrated that FDTD methods were useful for
simulations of acoustical behaviour of rooms at low frequencies, though disper-
sion errors are introduced.

The benefits of these methods are, that diffraction and scattering are implic-
itly part of the wave equation incorporates, and that dynamic scenes – such as
change in geometry and moving sources and receivers – can easily be handled,
which is required in virtual reality systems. The drawback is that the compu-
tation increases with a factor r4 in time and a factor r3 in space, making the
method only suitable for lower frequencies.

Recently, (Kowalczyk et al., 2011) have presented frequency-dependent bound-
aries for the family of 3-D compact explicit schemes based on non-staggered
rectilinear grid, resulting in a digital impedance filter (DIF) boundary model
derived from a 3-D perspective. Improved performance over other approaches
commonly found in the FDTD and DWM literature is indicated. Because the
same scheme is applied across the medium, the boundaries, the edges, and the
corners, consistency of the schemes is realised, and a numerical stability proof
is given.

In (Savioja, 2010), a GPU implementation using the Interpolated Wideband
Scheme with frequency-dependent boundaries is presented. The results were
obtained by allowing 10% of dispersion errors and using frequency-independent
boundaries. For a room of size 7× 5× 2.8 meter, the standard leapfrog scheme
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was capable of simulating frequencies up to 1063 Hz, whereas the interpolated
wideband scheme was capable of simulating frequencies up to 1509 Hz. For
a room of size 40 × 20 × 15 meter, the standard leapfrog scheme simulated
frequencies up to 339 Hz, whereas the interpolated wideband scheme simulated
frequencies up to 469 Hz.

In (Raghuvanshi et al., 2009) an adaptive rectangular domain decomposition
method exploiting the known analytical solution of the wave equation in rect-
angular domains has been proposed, where FDTD methods are used across the
domain boundaries. Exploiting the rectangular partitioning, the grids can be
much coarser than those required in most numerical methods, reducing the order
of magnitude for memory and computation by at least an order of magnitude,
while still enabling high accuracy.

1.1.3 Digital Waveguides

The digital waveguide mesh (DWM) is a numerical, discrete-time simulation
method based on a regular spatial sampling grid used to model wave propagation
in an enclosed system. The continuous solution p to the 1-D wave equation is
given by the D’Alambert equation (Murphy et al., 2007)

p(x, t) = p−(x− ct) + p+(x+ ct) (1.1)

where p−(x−ct) and p+(x+ct) represents arbitrary twice-differential fixed wave
shape functions travelling at speed of sound c in the left and right directions,
respectively. Sampling the continuous signal is carried out by the change of
variables x→ xm = mX and t→ tn = nT leading to the discrete formulation

pm(n) = p+(n−m) + p−(n+m) (1.2)

where the notation pm(n) ≡ p(xm, tn) is used. This formulation can be im-
plemented in an efficient and straightforward manner using two parallel delay
lines representing the left- and right-going travelling wave. Scattering junctions
together with the 1-D waveguide elements are the building blocks for modelling
physical models of a vibrating system using digital waveguides. By intercon-
necting waveguides with scattering junctions, the behaviour of travelling waves
in 2-D and 3-D can be modelled. Figure 1.1a shows four waveguides connected
by a scattering junction S. The line segments with opposite arrows represent
bi-direction delay lines, where Y1, Y2, Y3 and Y4 are the admittances of the
propagation media. By locating these junctions in e.g. a rectilinear grid as
depicted in Figure 1.1b, the sound field in cavities can be modelled.

The sound pressure pm at junction m for L connected waveguides can be ex-
pressed using the W-DWMs formulation and the K-DWMs formulation. The
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a) b)

Figure 1.1: a) Lossless scattering junction S connecting four waveguides with
admittances Y1, Y2, Y3 and Y4 corresponding to the propagation media, b)
Lossless scattering junctions S connecting four waveguide each resulting in a
rectangular 2-D grid. Source: (Duyne and Smith III, 1993)

W-DWM is formulated as (Murphy et al., 2007)

pm(n) =
2
∑L
l=1 Yl · p

+
m,l(n)∑L

l=1 Yl
(1.3)

where Yl = 1/Zl of each interconnection is called the admittance coefficients
used to model the propagation media, and is defined as the inverse of the acous-
tic impedance Z. L is the number of junctions, and p+

m,l(n) and p−m,l(n) are
denoting the wave travelling towards the junction and away from the junction,
respectively. For updating pm at the next time-step n+ 1, the ingoing pressure
value p+

m,l(n + 1) must be computed. The pressure at a given location m is
obtained by adding the ingoing and outgoing wave to a junction as

p−m,l(n) = pm(n)− p+
m,l(n) (1.4)

and using the relation between the ingoing and outgoing wave to a junction,
gives us the pressure for the ingoing pressure value at the next time step:

p+
m,l(n+ 1) = p−m,l(n) (1.5)

The above equations basically states, that if a wave enters a junction along
the given directions, some portion of the wave is reflected back, and the rest is
divided into the outgoing waves travelling through the junction.
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The W-formulation is a generalisation of Eq. (1.2), which can be seen by setting
L = 2 and Y = 1 (corresponding to a homogeneous grid in 1-D). The K-DWM
formulation is given by

pm(n) =
2
∑L
l=1 Yl · pl(n− 1)∑L

l=1 Yl
− pm(n− 2) (1.6)

The K-formulation is also called the FDTD formulation due to the fact that it is
equal to the standard leapfrog scheme from the finite-difference literature (can
be seen directly by setting Yi = 1 for the 1-D case). In Section 2.4 we will show
that the W-DWM can be regarded as a subclass of the FDTD method as well.

An advantage of W-formulation is its numerical robustness, the relative straight-
forward way of using fractional delays when building digital waveguides and the
ability to commute losses to specific lumped points in the system (Karjalainen
and Erkut (2004), Murphy et al. (2007)). In general, the W-formulation is the
right choice when modelling in 1-D, but when going to higher dimensions, cal-
culations must take place in every junction for every time-step. The advantages
of the K-formulation are found when modelling mesh-like structures in 2-D and
3-D, since the overhead of calculating p+

m,l and p−m,l is eliminated.

1.1.4 FEM/BEM

Finite Element Methods (FEM) and Boundary Element Methods (BEM) are nu-
merical methods for solving linear partial differential equations (Hunter (2001),
Vorländer (2007)).

In FEM, finite elements are created by discretising a field of volume into volume
elements. In these elements, the energy formulation of the harmonic field is used
and weighting functions are defined to represent the sound pressures within the
elements. All elements’ entries are combined into a “stiffness” matrix S, a mass
matrix M and a damping matrix C, together with a matrix incorporating source
contributions and boundary conditions, which is to be solved to obtain the sound
pressures.

BEM solves the wave equation expressed in Green’s equation describing how
sound radiates from a point, and is re-arranged into the Helmoltz-Kirchoff’s
integral equation. The integral is discretised into a mesh and solved numerically
by subdividing only the boundaries of the environment and assuming the particle
velocity is a linear combination of a finite number of basis functions on the
elements.
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Both methods are usually used in the frequency domain and compute steady-
state solutions. FEM and BEM methods are good choices when solving par-
tial differential equations over complex domains and when the desired precision
varies over the domain, making it possible to increase the precision for regions of
particular interest. The drawback is, that dynamic scenes are difficult to model,
making these models less suitable for virtual reality systems. The FEM method
provides an accurate solution to the wave equation, but is mainly used at low
frequencies since computational time and storage space increases dramatically
with frequency.

1.2 Thesis Objective

This thesis will investigate whether it is possible to implement numerical meth-
ods for solving the wave equation in 3-D in real-time with focus on physical
correct simulations of the lower frequency sound field.

Interactive scenes – such as moving objects around, opening a door or changing
the material on the surfaces – must be supported in order to allow the user to
explore the virtual environment in a realistic manner. We are only interested in
modelling the lower frequency sound field, and therefore we will consider Finite-
Difference Time-Domain (FDTD) for solving the 3-D wave equation in the time
domain. Methods such as Finite Element Method (FEM) and Boundary Ele-
ment Method (BEM) are valuable tools for simulating the lower sound field, and
are widespread methods giving physically precise results. Though, interactive
scenes are rather hard to incorporate, and real-time simulation is far from being
realisable in the near future due to the computational load, making them only
usable for offline modelling.

To accomplish the task of real-time modelling with FDTD, we will exploit that
these numerical methods are suitable for parallelisation, and implement them
using the massive parallel architecture of Graphic Processing Units (GPUs).
Concerning the physical correctness of the simulations of the sound field, sev-
eral aspects must be considered, namely dispersion errors introduced by solving
the wave equation numerical, and the modelling of the boundaries. Dispersion
errors implies that waves with different frequencies will travel with slightly dif-
ferent speeds, which does not correspond to the physical behaviour of wave dis-
semination in air. The boundaries should be frequency-dependent and modelled
with the same characteristics as the boundaries encountered in the real-world,
such that the sound is absorbed, reflected and scattered in a realistic manner.

The system should be implemented in such a way, that it can be integrated into
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the virtual reality system VirKopf in the future. VirKopf is under development
at the Institute of Technical Acoustics (ITA) at RWTH Aachen University and
currently implements GA.

1.3 Thesis Overview

The prototyping of the system has been done in Matlab, whereas the final system
has been implemented in C++. The prototyping focused primarily on under-
standing the methods and validating the physical correctness by comparing the
results with the widely used FEM method. The prototype was implemented in
C++, and afterwards a final version exploiting the GPU using CUDA was done
with high performance in mind.

The structure of the thesis is given below:

In Chapter 2, the fundamentals for the work is reviewed, including the wave
equation, sound wave reflections, sound fields in cavities, and finite-difference
time-domain methods.

In Chapter 3, a family of non-staggered 3-D compact explicit schemes are intro-
duced and seven specific scheme choices are given including a short discussion
on dispersion errors. The formulation of transparent sources is derived and two
impulses used for excitation of the system are proposed.

In Chapter 4, a boundary model consistent with locally reacting surfaces taking
the 3-D wave equation into account is presented and update formulas for all
point types are derived.

In Chapter 5, CUDA programming is introduced and three GPU implementa-
tions of the FDTD method are described. In Chapter 6, an overview of the
software modules is given, including how grid and grid points are modelled, how
the solving interface is designed and how grid point classification is done.

In Chapter 7, experiments concerning the physical correctness and performance
are done.

Finally, conclusion and further work can be found in Chapter 8.



Chapter 2

Fundamentals

In this section we will found the basics of finite differences, how reflections of
sound waves can be described and how sound fields in cavities behave.

2.1 Wave Equation

In physics, waves are to be considered as disturbances in a physical medium
with respect to time and space, resulting in the effect of energy transfer. To
illustrate the effect of waves, we can imagine a chain of masses connected by
springs. When one mass is initially moved by an external force, it transfers
energy to the spring, which is compressed and transfers the energy to the next
mass and so on. It is also intuitively clear, that heavier masses are moved more
slowly, since more energy is needed compared to lighter masses. The intuition
in this mechanic system can be directly transferred to the energy transport and
the nature of wave speed in sound waves, where particles are displaced in space
and time, which can be denoted by the vector s = s(x, y, z, t), where x, y and
z denotes the length and direction of the displacement and t is the time. The
velocity is found by taking the derivative of the displacement vector

v =
∂s

∂t
(2.1)
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a) b)

Figure 2.1: Volume element in a one-dimensional fluid medium. a) Pressure
variation ∆p introduced by pushing from the left side, b) velocity variation ∆v
introduced by adding pressure form the left side.

By analogy to the mechanical system described above, the particles transfer
energy from one point to another often with no permanent displacement of
particles in the medium. Instead small local oscillations occur, introducing
local pressure fluctuations in the medium, given by

p = ptot − p0 (2.2)

where ptot is the space- and time-dependent pressure resulting from the particle
displacement and p0 is the pressure of the medium at rest. In acoustics, the
main quantity of interest is pressure, mainly because the human ear is sensitive
to pressure and that the hearing system directly computes the sound on basis
of that.

If the sound pressure is considered small p � p0 (and the density follows the
same prerequisite), the sound field can be described by only two linear sound
field equations in terms of velocity and pressure (Kuttruff, 2000):

∇p = −ρ0
∂v

∂t
(2.3)

∇ · v = − 1

ρ0c2
∂p

∂t
(2.4)

where ρ0 is the medium density (ρ0 = 1.42 for air) and c is the speed of sound
(c = 344 m/s in 21◦ C). The gradient and divergence in 3-dimensions are de-

noted by ∇p =
(
∂p
∂x ,

∂p
∂y ,

∂p
∂z

)
and ∇ · v =

(
∂v
∂x + ∂v

∂y + ∂v
∂z

)
, respectively. These

quantities are depicted in Figure 2.1. Consider a small volume element of thick-
ness ∆x in a one-dimensional fluid medium, and that the volume element is
being pushed by a source with pressure p+∆p by for example a piston mounted
somewhere in the left side of the tube. A pressure difference ∆p in the fluid
medium at the left and right side of the volume element will lead to a force on
the element, and this difference is denoted by the pressure gradient. In general,
the pressure gradient will point in the direction, where the change is biggest.
The divergence of the velocity is a scalar denoting the magnitude of the velocity
field’s source or sink at a given point. If we consider the heating of air in a
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region, the velocity field will point outwards from the region and hence the di-
vergence of the velocity of the particles in the region will be a positive value due
to an expansion and hence act as a source. When cooling the air, the opposite
will happen and the region will act as a sink. In b), the velocity field points
outwards to the right (because of the injected pressure) and hence the velocity
divergence will be a positive value.

By taking the gradient of Eq. (2.3) and inserting Eq. (2.4), we can express the
sound field by only considering the pressure, which leads to the standard form
of the wave equation (Kuttruff, 2000)

∆2p =
1

c2
∂2p

∂t2
(2.5)

where ∆2p =
(
∂2p
∂x2 + ∂2p

∂y2 + ∂2p
∂z2

)
is the Laplacian.

2.2 Reflections of Sound Waves

When a sound wave encounters a wall, a part is reflected and another part
is absorbed by the wall material. The amount of absorption depends on the
material property and determines the amount of reflected energy. Also, a phase
change (delay) might occur if the wave can enter the material. The acoustic
properties of a wall can be described by its wall impedance Z defined by the
ratio of the sound pressure at the wall surface to the normal of the velocity at
the same location:

Z =
p

v
(2.6)

Another measure of the a wall’s properties is given by the reflectance factor,
defined in terms of the impedance

R =
Z cos θ − Z0

Z cos θ + Z0
(2.7)

where Z0 = ρ0c is called the characteristic impedance of air. The specific wall
impedance is defined as ξ = Z/Z0, which - by rewriting the Eq. 2.7 - yields

R =
ξ cos θ − 1

ξ cos θ + 1
(2.8)

and the corresponding formula for the specific wall impedances written in terms
of the reflectance yields

ξ =
1 +R cos θ

1−R cos θ
(2.9)
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Figure 2.2: Overlapping room modes at low and high frequencies. Source:
(Vorländer, 2007).

2.3 Sound Fields in Cavities

We will in the following describe the theory of normal modes leading to the so-
called Schroeder frequency, for which geometrical methods can no longer yield
a good approximation to the sound field. Modes can be explained as being
the pattern of motion in which all parts of the system moves sinusoidally with
the same frequency and with a fixed phase. Such a phenomenon occur when
waves interfere at specific frequencies. In other words, the modes of a system
is given when the superpositions of all the travelling waves result in a standing
wave. A mode is characterised by a modal frequency and a modal shape, and
is numbered according to the number of sinusoidal periods.

In 1-D, the relation between the wavelength λ, the dimension of the 1-D space
L and the wave number k is given by

L =
λ

2
k, k ∈ N (2.10)

The equation can be easily understood by for example considering the case
where the standing wave only consists of one crest, giving us the wave number
k = L

2L/2 = 1. When 2 crests are present, k = L
L/2 = 2, and so on. The wave

number is nothing else than a number describing the shape and the frequency,
dependent of the size of the geometry.

The Schroeder frequency is the limit, where the overlap of the modes in the
cavity result in a sound field, where independent modes can no longer be studied
independently and instead a diffuse sound field occur. In room acoustics, the
density of the modes increases with frequency as depicted in Figure 2.2. The
frequency in between small modal overlap and heavily overlapping modes is
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called the Schroeder frequency and is calculated by the following formula

fs � 1200

√
T60

V
(2.11)

where fs is the Schroeder frequency, T60 is the reverberation time in seconds and
V is the volume inm3. In a room with perfectly reflecting boundaries, each mode
can be uniquely mapped to exactly one frequency since the modes do not overlap,
but for higher wall impedances the modes becomes wider and their overlap
regions increase accordingly. This fact is reflected in Schroeder’s equation where
the reverberation time is T →∞ for perfectly reflecting boundaries, and hence
the Schroeder frequency fs → ∞ for fixed V . Accordingly, fs → ∞ for V → 0
and T fixed. The reverberation time is traditionally described by the time
required for a level decrease of 60 dB, and can be approximated using Sabine’s
equation (Vorländer, 2007)

T60 = 0.16
V

Sᾱ
(2.12)

where S is the total surface area of the room in m2, and ᾱ = 1
S

∑N
i=1 Siαi is the

average absorption coefficient of the room surfaces. The product Sᾱ is denoted
equivalent absorption area and is the total absorption of the room measured in
sabins.

2.4 The Finite-Difference Time-Domain Method

The idea behind the FDTD method is to replace all derivates in the wave equa-
tion (2.5) by finite-differences. Different approximations can be used, where
the simplest is the second-order centered finite-differences. The second-order
centered finite-differences w.r.t. t is given as

∂2p

∂t2
=
pn+1(xi, yj , zk)− 2pn(xi, yj , zk) + pn−1(xi, yj , zk)

∆t2
+O(∆t2) (2.13)

where ∆t is the temporal sampling resolution and O(∆t2) is the temporal trun-
cation error. The superscript notation n denotes the time index and is a short-
hand for the temporal variable tn. The approximation to the Laplacians with
grid spacing ∆x is given by

∂2p

∂x2
=
pn(xi+1, yj , zk)− 2pn(xi, yj , zk) + pn(xi−1, yj , zk)

∆x2
+O(∆x2) (2.14)

where O(∆x2) is the spatial truncation error. Formulations for the y- and z-
dimensions are done in a similar manner. By replacing the partial derivatives in
Eq. (2.5) with the above finite-difference approximations without the truncation
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terms, we get the standard non-staggered leapfrog method (Kowalczyk et al.,
2011):

pn+1(xi, yj , zk) =
1

3
(pn(xi+1, yj , zk) + pn(xi−1, yk, zj)

+pn(xi, yj+1, zk) + pn(xi, yj−1, zk) (2.15)

+pn(xi, yj , zk+1) + pn(xi, yj , zk−1))− pn−1(xi, yk, zj)

The temporal resolution ∆t = ∆x
c
√

3
has been used, which is the upper limit for the

so-called Courant’s stability property condition for the SLF method (explained

in Section 3.1). Using this limit, the constant c2 ∆t2

∆x2 = 1/3 is obtained.

A staggered grid formulation is obtained by approximating the coupled wave
equation given in Eq. (2.3) and (2.4) with finite differences. The staggered
leapfrog method is then given by (Botteldooren, 1995)

vn+1/2
x (i+ 1/2, j, k) = vn−1/2

x (i+ 1/2, j, k)− ∆t

ρ0∆x
(pn(i+ 1, j, k)− pn(i, j, k))

vn+1/2
y (i, j + 1/2, k) = vn−1/2

x (i, j + 1/2, k)− ∆t

ρ0∆x
(pn(i, j + 1, k)− pn(i, j, k))

vn+1/2
z (i, j, k + 1/2) = vn−1/2

x (i, j, k + 1/2)− ∆t

ρ0∆x
(pn(i, j, k + 1)− pn(i, j, k))

pn+1(i, j, k) = pn(i, j, k)− ρ0c
2∆t

∆x

(
vn+1/2
x (i+ 1/2, j, k)

)
− ρ0c

2∆t

∆x

(
vn+1/2
y (i, j + 1/2, k)

)
− ρ0c

2∆t

∆x

(
vn+1/2
z (i, j, k + 1/2)

)
where the nodal points for the coupled differential equations are located at
different geometrical positions allowing for a natural and accurate formulation.
The additional equations have been shifted a half step in both time and space
due to the staggered formulation, but still yields the same truncation errors as for
the non-staggered formulation, since the derivatives for the wave equation have
been approximated centered differences with the same truncation errors. Using
staggered or non-staggered formulation should therefore give the same level of
dispersion errors. Dispersion errors are introduced in all numerical schemes due
to the fact that the partial derivatives are approximated by finite differences,
and manifest themselves as waves with different wave numbers travelling with
slightly different speed, which does not correspond with the physical behaviour.
By using a finer grid, i.e. by choosing a smaller ∆x, the dispersion error can be
minimised, but it comes with the cost of more computational power.

The schemes considered so far are all explicit schemes, since they calculate the
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state of the system at the next time step by only considering the current and pre-
vious time steps. There are also another scheme types called implicit schemes,
that solves the equation by considering current and previous time steps but
also includes the next time step. In general, implicit schemes introduces fewer
dispersion errors, but comes with the cost of more computations.

2.4.1 Comparison with Digital Waveguides

As already mentioned in Section 1.1, the K-DWM formulation can directly be
seen as a FDTD standard leapfrog scheme. In the following, we will show that
the W-DWM from Eq. (1.3) can also be seen as a subclass of the FDTD method.
We will only show the relationship for the 1-D case with two junctions (L=2)
using the the notion from Eq. (1.2):

p(m,n) = p+(n−m) + p−(n+m) (2.16)

The formulation of the standard leapfrog method from Eq. (2.15) can be for-
mulated in 1-D as

pm(n+ 1) = pm+1(n) + pm−1(n)− pm(n− 1) (2.17)

Substituting the right-hand side of Eq. (2.17) using Eq. (2.16) gives us (Smith,
2012)

p(m,n+ 1) = p(m+ 1, n) + p(m− 1, n)− p(m,n− 1)

= p+(n−m− 1) + p−(n+m+ 1)

+ p+(n−m+ 1) + p−(n+m− 1)

− p+(n−m− 1)− p−(n+m− 1)

= p−(n+m+ 1) + p+(n−m+ 1)

which has the same formulation as the W-DWM formulation in Eq. (2.16).
Therefore, the W-DWG can be considered as a subclass of the FDTD methods,
only the implementation differs.

2.4.2 Computation and Memory Consumption

The general computation and memory consumption for the DWG and FDTD
method will be considered in this section. Without loss of generality, we will
only consider the standard leapfrog methods.
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The grid spacing ∆x must be sufficient to capture the wave length, and assuming
that we wish to sample the wavelength k times, we get

∆x =
λmin

k
(2.18)

where λmin is the wave length and k depends on the scheme. Typically k = 8 to
10 gives adequate results, with inaccuracies appearing as soon as the sampling
drops below this rate1. Note that the Nyquist sample rate (k = 2) is much
to less when considering FDTD simulations. The time step must be chosen to
satisfy the Courant’s stability property condition (more details in Section 3.1)

∆t ≤ ∆x√
D · c

(2.19)

where D is the dimension of the simulation and c is the speed of sound. This
limit is crucial, since larger sampling rates require denser meshes specified by
∆x, resulting in more computation time. Increasing the mesh resolution leads to
less dispersion errors, but memory and computation time dramatically increases:
By refining the mesh by a factor r, the requirements are augmented by r3 in
memory and r4 in computation time. To see why this is the case, let us first
assume that the geometry is cubic. By refining the mesh by 2, the original
cube now consists of 8 smaller cubes each with the same number of points as
the original one, giving a memory increase by a factor 23 = 8. Regarding the
computation time, we will need a factor of r time steps more in all dimensions,
yielding r3. Moreover, using the Courant’s condition from Eq. (2.19), the wave
has travelled c ·∆t ≤ c ∆x

c
√

3
= ∆x√

3
in one time step and again, dividing ∆x by r,

we will need a factor of r time steps more, resulting in an increase in time by
r4.

In Table 2.1, the number of grid points per m3 for the SLF and IWB schemes
is given for frequencies between 100 Hz and 20,000 Hz using k = 13.4 samples
per wavelength for the SLF scheme and k = 5.4 samples per wavelength for
the IWB scheme. From these observations, we can forget about simulating the

Grid nodes / m3

Scheme 100 Hz 1,000 Hz 5,000 Hz 10,000 Hz 20,000 Hz
SLF 59.11 59,107 7.4 mio. 59.1 mio. 472.8 mio.
IWB 3.87 3,868 483,520 3.8 mio. 30.9 mio.

Table 2.1: Number of grid points per m3 when using the SLF and IWB for
different frequencies.

whole bandwidth using FDTD, but for lower frequencies the number of grid

1This is true for the SLF, but fewer sample points can be used when considering other
schemes. See Chapter 3.1 and Chapter 7
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points are manageable. We also see a big difference in the number of points
used for the two schemes due to the number of sampling points required for –
in this case – a maximum of 2% of dispersion errors.

2.4.3 FDTD Variants

An overview of different schemes used for solving the acoustic wave equation is
given below:

• Implicit schemes (Kowalczyk and van Walstijn, 2010a):

– Alternating Direction Implicit (ADI).

– Maximally Flat Isotropic (MFI)

– Optimum Implicit (OI)

• Explicit schemes (Kowalczyk et al. (2011), Raghuvanshi et al. (2009)):

– Staggered and non-staggered Standard Leapfrog (SLF)

– Octahedral (OCTA)

– Cubic Closed-Packed (CCP)

– Interpolated Digital Waveguide (IDWG) Mesh

– Interpolated Isotropic (IISO), Interpolated Isotropic 2 (IISO2), In-
terpolated Wideband (IWB).

– Large star systems.

All the listed explicit schemes are second-order in time and space (compact in
space), except the large star systems, which takes nodes located farther away
into account. Large star systems can lead to less dispersion errors, but are
inconvenient due to complicated treatment of boundaries (Kowalczyk, 2008a).
The compact schemes differ in how the neighbouring points are chosen. The im-
plicit schemes have different properties, with the ADI methods usually having
better stability properties than explicit schemes and can even be fourth-order
accurate in time and space. MFI is useful when the aim is to apply pre- and
post-warping techniques and OI is an optimisation technique, that is compu-
tational most effective when the dispersion error is below 1 % (Kowalczyk and
van Walstijn, 2010a).

Because real-time simulation is crucial for the project, GPU programming will
be used as a main tool for obtaining this goal. The implicit schemes will not be



18 Fundamentals

considered because of their computational requirements and strong dependencies
between nodal points within each time steps, making parallelisation less useful.
In (Kowalczyk et al., 2011), non-staggered 3-D compact explicit schemes on
a rectilinear grid have been investigated for modelling acoustic systems in a
specified audio bandwidth. A new boundary formulation approximating the
locally reacting surfaces reflectance well is proposed, and it is indicated that the
3-D interpolated wide-band scheme and the 3-D interpolated isotropic schemes
are the most efficient choices for accurate and isotropic FDTD simulations,
with improved performance over other approaches commonly found in FDTD
and DWM literature on room acoustics.

Because of the promising results obtained in (Kowalczyk et al., 2011), it has
been decided to implement these methods with the hope of simulating the lower
frequency sound field with physical correct result in real-time on the GPU.



Chapter 3

Simulation of the Sound Field
using Finite-Difference

Time-Domain Methods

3.1 Finite-Difference Time-Domain Schemes

Any 3-D non-staggered compact explicit scheme approximating the wave equa-
tion can be described by (Kowalczyk and van Walstijn, 2011)

δt2pni,j,k = λ2
c

[
(δ2
x + δ2

y + δ2
z) + a(δ2

xδ
2
y + δ2

yδ
2
z + δ2

xδ
2
z) + bδ2

xδ
2
yδ

2
z

]
pni,j,k (3.1)

where a and b denote two free numerical parameters, pni,j,k is the pressure value
at time n at a given location indicated by the indices i, j and k in the x-, y- and
z-directions, respectively, and λc is the Courant number explained in a moment.
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Applying the second-order centered finite-difference operators given as1

pni,j,k ≡ p(x, y, z, t)
∣∣
x=i∆x,y=j∆x,z=k∆x,t=n∆t

(3.2)

δ2
t ≡ pn+1

i,j,k − 2pni,j,k + pn−1
i,j,k (3.3)

δ2
x ≡ pni+1,j,k − 2pni,j,k + pni−1,j,k (3.4)

δ2
y ≡ pni,j+1,k − 2pni,j,k + pni,j−1,k (3.5)

δ2
z ≡ pni,j,k+1 − 2pni,j,k + pni,j,k−1 (3.6)

(3.7)

we get the following generalised difference equation for compact explicit schemes:

pn+1
i,j,k = d1(pni+1,j,k + pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+d2(pni+1,j+1,k + pni+1,j−1,k + pni+1,j,k+1 + pni+1,j,k−1 + pni,j+1,k+1 + pni,j+1,k−1

+pni,j−1,k+1 + pni,j−1,k−1 + pni−1,j+1,k + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j,k−1)

+d3(pni+1,j+1,k+1 + pni+1,j−1,k+1 + pni+1,j+1,k−1 + pni+1,j−1,k−1 (3.8)

+pni−1,j+1,k+1 + pni−1,j−1,k+1 + pni−1,j+1,k−1 + pni−1,j−1,k−1)

+d4p
n
i,j,k − pn−1

i,j,k

with the coefficients given by

d1 = λ2
c(1− 4a+ 4b),

d2 = λ2
c(a− 2b),

d3 = λ2
cb, (3.9)

d4 = 2(1− 3λ2
c + 6λ2

ca− 4bλ2
c)

The coefficients a and b determine the characteristics of the scheme, and in
Table 3.1 specific choices for a and b are listed. For each scheme the Courant
number λ is listed and the bandwidth for which a maximum of 2% and 10% of
dispersion errors are allowed. In Fig. 3.1, the stencils are depicted by showing
the neighbour relation for the standard Leapfrog (SLF) scheme consisting of 6
neighbours, the Octahedral (OCTA) scheme consisting of 8 neighbours, Cubic
Close-Packed (CCP) scheme consisting of 12 neighbours, and the interpolated
schemes. Specific choices of interpolated schemes from the table are the Inter-
polated Digital Waveguide Mesh (IDWM), the interpolated isotropic schemes
(IISO and IISO2) and the interpolated wideband scheme (IWB). The interpo-
lated schemes can in general be seen as linear superposition of the SLF, OCTA
and CCP schemes.

1The second-order centered finite-difference operators correspond to Eq. (2.13) and Eq.
(2.14), where the denominators ∆t and ∆x have been collected in the λ term outside the
parenthesis in Eq. (3.1).
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Standard
Leapfrog

(SLF)

Octa-
hedral

(OCTA)

Cubic
Close-
Packed
(CCP)

Interp.
DWM

(IDWM)

Interp.
Isotropic
(IISO)

Isotropic
2

(IISO2)

Interp.
Wide-
band

(IWB)

nr grid points 6 8 12 26 18 26 26

a 0 1
2

1
4

0.2034 1
6

1
6

1
4

b 0 1
4

0 0.0438 0 1
48

1
16

λ
√

1
3

1 1
√

1
3

√
3
4

√
3
4

1

d1
1
3

0 0 0.1205 1
4

15
48

1
4

d2 0 0 1
4

0.0386 1
8

3
32

1
8

d3 0 1
4

0 0.0146 0 1
64

1
16

d4 0 0 -1 0.6968 -1 − 9
8

− 3
2

bandwidth 0.196 0.25 0.333 0.196 0.333 0.333 0.5

accuracy (2%) 0.075 0.093 0.175 0.069 0.175 0.175 0.186

accuracy (10%) 0.151 0.185 0.301 0.144 0.301 0.301 0.371

Table 3.1: Parameters for seven chosen 3-D compact explicit schemes.
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Figure 3.1: Stencils for the Standard Leapfrog scheme, Octahedral (OCTA)
scheme, Cubic Close-Packed (CCP) scheme and the interpolated schemes.
Source: (Kowalczyk and van Walstijn, 2011)
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For explaining the Courant number, let us take a step back. When considering
digital signal processing, the sampling rate must respect the Nyquist frequency
theorem, which states that the sampling rate must be at least twice the max-
imum frequency fmax. For FDTD methods, this limit is not enough to ensure
properly sound modelling due to dispersion errors introduced in the schemes.
We will denote the number of sampling points per wavelength with k, and the
grid spacing is then given by

∆x =
λmin

k
(3.10)

where λmin is the wavelength given by

λmin =
c

fmax
(3.11)

The relation between the spatial and temporal resolution is given by the Courant
number λc as

λc ≥ c
∆t

∆x
(3.12)

λc can not be chosen freely but depends on the scheme type. For the family
of 3-D compact schemes, the Courant’s stability property condition is given by
(Kowalczyk and van Walstijn, 2011):

λ2
c ≤ min

(
1,

1

2− 4a
,

1

3− 12a+ 16b

)
(3.13)

Thus, stable 3-D FDTD schemes are obtained for any set of parameters (a, b)
that satisfies Eq. (3.13) and choice for particular stencils have already been given
in Table 3.1. We will follow (Kowalczyk and van Walstijn, 2011) and always set
the stability condition to the highest value by using equality in Eq. (3.13), since
it is stated that it usually gives the smallest dispersion errors. Hence, to decide
on the values for our two unknown variables ∆x and ∆t, we use Eq. (3.10) with
a suitable value k for ∆x, and for ∆t, we rewrite Eq. (3.12) (using equality) as

∆t = λc
∆x

c
(3.14)

3.2 Sources

Until now, we have not considered how energy is added to the system. In FDTD
simulations, energy is usually injected in a single point and the energy is then
distributed outwards from the point by the wave equation. Before discussing
possible choices for the input signal and how to injecting energy to the system,
we will derive the sampling rate for FDTD simulations.
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3.2.1 Sample Resolution

As already mentioned, the spatial resolution depends on the maximum frequency
and the maximum dispersion errors allowed, whereas the Courant stability con-
dition states the relation between the spatial and temporal resolution. Let t
denote the number of time steps necessary for evaluating one period T = 1

fmax

of the sound signal. Then the following equation has to be solved:

t ·∆t =
1

fmax
(3.15)

Inserting Eq. (3.14) and using fmax = c
λmin

we get

t =
1

λc
∆x
c ·

c
λmin

=
1

λc
∆x
λmin

(3.16)

By also using the grid spacing in Eq. (3.10), we get

t =
1

λc · λmin/k
λmin

=
k

λc
(3.17)

This observation is important, since it tells us what our sample rate fs should
be, namely a factor k

λc
of the maximum frequency fmax:

fs =
k

λc
· fmax (3.18)

3.2.2 Impulse Signals

When choosing an excitation signal, all input signals can be used as long as the
signal is band-limited to fit the frequency range of the simulation. Gaussian
impulses have been widely used in the FDTD literature, but other types can
be used as well. It is for example possible to feed the source signal that should
be modelled directly into the system, which would be an obvious choice when
considering real-time systems. However, when the properties of a system are
investigated, a band-limited wideband signal is the natural choice. The usual
compromise when designing impulses is to have a function in the frequency do-
main that has a sharp cutoff near the lower and upper frequency limit, but at
the same time having a signal as short as possible in the time domain. It is im-
possible in practice to have signals with perfectly sharp cutoffs in the frequency
domain, and the theory tells us that approximating such a function will lead to
an infinite long time-domain signal.
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Two impulses will be used in this work, namely a normalised differentiated Gaus-
sian pulse and a Kaiser-windowed sinc function. The normalised differentiated
Gaussian is given as

Ugauss(t) =
(t− t0)

tw
e
− (t−t0)2

t2w (3.19)

where t0 is the time delay and tw = (π · fmax/2)−1 is the half width of the
pulse. One should use t0 ≥ 4tw for achieving a smooth initialisation of the
signal (Gedney, 2010). The Kaiser-windowed sinc impulse has been designed as

Ukaiser(t) = wkaiser ·
sin(πt)

πt
(3.20)

where wkaiser is the Kaiser window. The reason for using a Kaiser window is
to limit the ideal sinc function of infinite duration to a finite impulse response.
Since we have used the Matlab filter toolbox to design the filter, we will not go
into details about how the Kaiser window is formulated. It has been observed
that the DC component has to be removed, which – for the Gaussian pulse – was
done by taking the derivative of the Gaussian. The two impulses are depicted in
Figure 3.2 for a desired maximum frequency of fmax = 100 Hz. The upper row
shows the frequency domain, whereas the lower row shows the time domain.
We see, that the Gaussian pulse drops almost 60 dB at 150 Hz, whereas the
Kaiser-windowed sinc function has a cut-of frequency very near 100 Hz. The
drawback of having a very step cut-off can be seen in the time-domain, where
Kaiser-windowed impulse has a duration of around 0.25 seconds, whereas the
Gaussian only has a duration of about 0.05 seconds.

3.2.3 Source modelling

We will need a way to inject the source energy into the system, and this can be
done by embedding the sources as “hard”, “soft” or “transparent” (Schneider
et al., 1998). Generally for all the source types is, that the excitation is per-
formed in a single point in the domain, and from there the energy is distributed
outward from this point due to the nature of the wave equation. In 1-D, a hard
source can be implemented as

pnisrc = fnisrc (3.21)

where f is the forcing term (e.g. the Gaussian impulse), depending on the
iteration step n and the fixed location isrc of the source. Since the update
equation does not apply at this source node, the source is reflecting the incoming
wave when interfering with the source. That is, the source itself is being treated
as a perfectly reflecting obstacle in the scene. This will not lead to physical
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Figure 3.2: Gaussian and Kaiser-windowed impulse signal band-limited to 100
Hz. a) Spectrum of Gaussian impulse, b) Time-domain of Gaussian impulse,
c) Spectrum of Kaiser-windowed impulse, d) Time-domain of Kaiser-windowed
impulse.
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correct behaviour for most simulations, since the size of the source will typical
be small compared to the scene. A way to compensate for this is to use a soft
source, where the node is set to the sum of the value returned by the update
scheme and the source signal as

pnisrc = pnisrc + fnisrc (3.22)

This yields a point that does not scatter any energy, but the sound field that
is radiated may not be correct compared to the field that should be radiated
by only the source function. The solution is to implement a transparent source,
compensating from the medium’s response.

Transparent sources were formulated in (Schneider et al., 1998) only for the
staggered leapfrog method, and not explicitly for the family of 3-D compact
explicit schemes. We will follow the idea presented in the paper, and show that
the formulation can also be used for the family of 3-D compact explicit schemes.

First, let us investigate how the update scheme behaves in the source point isrc
in 1-D using the Courant condition set to the upper limit λ = 1. The update
scheme then takes the following form:

pn+1
isrc

= pnisrc−1 + pnisrc+1 − pn−1
isrc

(3.23)

With the goal of creating a transparent source, let us implement a soft source
in the point i modelled as the sum of the driving function and the pressure
updated by the update equation in the same point i. This gives us the 1-D
explicit non-staggered leapfrog update scheme

pn+1
isrc

= pnisrc−1 + pnisrc+1 − pn−1
isrc

+ fnisrc (3.24)

We will now investigate how the pressure in the vicinity of the source point is
updated using the above scheme depicted in Table 3.2 for the first 5 time steps
n = 0, 1, 2, 3, 4. We observe that the update scheme is returning the pressure

p(i− 3) p(i− 2) p(i− 1) p(i) p(i− 1) p(i− 2) p(i− 3)

n = 0 f0

n = 1 f0 f1 f0

n = 2 f0 f1 f2 + f0 f1 f0

n = 3 f0 f1 f2 + f0 f3 + f1 f2 + f0 f1 f0

n = 4 f1 f2 + f0 f3 + f1 + f0 f4 + f2 + f0 f3 + f1 + f0 f2 + f0 f1

Table 3.2: Values of p in the vicinity of isrc in a one-dimensional grid for the
non-staggered leapfrog method with the Courant number set to the maximum
number, λ = 1.

values f0, f1 and f2 to the source node respectively at time n = 2, 3 and 4, which
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have to be eliminated in the case of a transparent source. This is achieved by
subtracting the source pressure two time-steps back in time as

pn+1
isrc

= pnisrc−1 + pnisrc+1 − pn−1
isrc

+ fnisrc − f
n−2
isrc

(3.25)

Unfortunately, this only hold in 1-D for the Courant number set to unity.

Let us repeat the approach, but now for arbitrary Courant numbers, leading to
the update scheme below:

pnisrc = λ(pn−1
isrc+1 + pn−1

isrc−1)− pn−2
isrc

+ fnisrc (3.26)

The pressure node values in the vicinity of the source node for Courant numbers
less that that unity are depicted in Table 3.3 for the first 5 time-steps. We will

p(i− 1) p(isource) p(i+ 1)

n = 0 f0

n = 1 λf0 f1 λf0

n = 2 λf1 f2 + 2λ2f0 − f0 λf1

n = 3 λf2 + (2λ3 − 2λ)f0 f3 + 2λ2f1 − f1 λf2 + (2λ3 − 2λ)f0

n = 4 λf3 + (2λ3 − 2λ)f1 f4 + (2λ2 − 1)f2 + (4λ4 − 6λ2 + 1)f0 λf3 + f1(2λ3 − 2λ)

Table 3.3: Values of p in the vicinity of isrc in a one-dimensional grid for the
non-staggered leapfrog method with the Courant number less that 1.

denote the pressure values returned to the source node by the update scheme as
the grid impulse response. The grid impulse response for an arbitrary driving
function f and arbitrary Courant numbers is listed below obtained from the
source column in Table 3.3 subtracting the driving function:

p0
isrc = 0,

p1
isrc = 0,

p2
isrc = (2λ2 − 1)f0,

p3
isrc = (2λ2 − 1)f1,

p4
isrc = (2λ2 − 1)f2 + (4λ4 − 6λ2 + 1)f0,

p5
isrc = (2λ2 − 1)f3 + (4λ4 − 6λ2 + 1)f1

p6
isrc = (2λ2 − 1)f4 + (4λ4 − 6λ2 + 1)f2 + (8λ6 − 20λ4 + 12λ2 − 1)f0

p7
isrc = (2λ2 − 1)f5 + (4λ4 − 6λ2 + 1)f3 + (8λ6 − 20λ4 + 12λ2 − 1)f1

We will now define the grid impulse response I as the pressure field returned
to the source node obtained by using the Kronecker delta function as a specific
choice of driving function in the update scheme in Eq. (3.26):

fnisrc = δ(n), (3.27)
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which yields

I0 = 0,

I1 = 0,

I2 = 2λ2 − 1,

I3 = 0,

I4 = 4λ4 − 6λ2 + 1,

I5 = 0,

I6 = 8λ6 − 20λ4 + 12λ2 − 1

I7 = 0,

By comparing the general grid impulse pisrc for an arbitrary forcing function
and the impulse I for the forcing function defined in Eq. (3.27), we notice that
the source node takes the following values for the first 8 time steps:

p0 = f0

p1 = f1

p2 = f2 + I2p0

p3 = f3 + I2p1

p4 = f4 + I2p2 + I4p0

p5 = f5 + I2p3 + I4p1

p6 = f6 + I2p4 + I4p2 + I6p0

p7 = f7 + I2p5 + I4p3 + I6p1

Since our goal is to eliminate the pressure values returned to the source node
by the update scheme such that p0 = f0, p1 = f1, p2 = f2, . . ., the extra terms
should be removed. This can be achieved by subtracting I2f0 at the second
update, I2f1 at the third update, I2f2 +I4f0 at the fourth update, I2f3 +I4f1

at the fifth update, and so on. Stated another way, to implement a transparent
source, the convolution of the impulse response and the driving function must be
subtracted from the source node. Hence, a transparent source for an arbitrary
Courant number can be obtained using

pn+1
isrc

= pnisrc + fn+1
isrc
−

n∑
m=0

In−m+1fmisrc (3.28)

The formulation in Eq. (3.28) also holds in higher dimensions, the only difference
is the actual values for the grid impulse I. We are interested in deriving the
general formulation for the transparent source corresponding to Eq. (3.28) for
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the family of compact schemes, and it turns out, that the formulation of the
transparent source in Eq. 3.28 remains the same, only the grid impulse I changes
(the full derivation can be found in Appendix 9.1).

The last part for obtaining a transparent source is to compute the grid impulse
I. Deriving the exact polynomial form is not desirable due to the complexity of
I, instead we will perform a simple simulation where a hard source is realised
and the value coupled back to the update note is recorded without considering
the driving function itself (Schneider et al., 1998). Thus, the impulse response
is calculated from the surrounding nodes, but the impulse response does not
couple back into the update scheme, since we use a hard source for injecting
pressure into the system. Using this method, the impulse of any of the schemes
in Eq. (3.8) can be realised and used with the formulation of the transparent
source in Eq. (3.28). Because the grid size has to be big enough to ensure
that no reflections are coupled back to the source node, computing the 3-D grid
impulse can be quite time and memory consuming. However, by exploiting the
following symmetry for a pressure node located at the origin (0, 0, 0)

pn−i,j,k = pni,j,k

pni,−j,k = pni,j,k

pni,j,−k = pni,j,k

pn−i,−j,k = pni,j,k

pn−i,j,−k = pni,j,k

pni,−j,−k = pni,j,k

pn−i,−j,−k = pni,j,k

the size of the computational domain can be reduced by using only half the
number of points in the x, y and z-dimensions leading to a domain that is 1

8 the
size of the full grid2.

For the experiments in Section 7.1, 10,000 iteration steps have been used for
simulating up to 100 Hz, which means that the grid impulse should be the same
length. But as we can see in Figure 3.3, the grid impulse converges towards 0
very fast and can therefore be padded with 0’s when the impulse takes values
near 0. Since the grid impulse only needs to be computed once for every scheme
and then recalled for use in any simulation that uses the same update scheme
and grid resolution, the difficulty of realising a transparent source is feasible
without too much effort.

2An even more efficient implementation that is 1
64

the size of the full grid can be done by
fully exploiting symmetry.
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Figure 3.3: Transparent impulse I for a) SLF method using k = 13.4, b) IWB
scheme using k = 5.4.

3.3 Numerical Dispersion Errors

In this section, we will briefly discuss how dispersion errors for the seven 3-D
compact explicit schemes schemes in Table 3.1 can be adjusted.

Numerical dispersion is an unwanted artefact introduced due to the approxi-
mations made when discretising the continuous wave equation with finite dif-
ferences. These artefacts are dependent on the direction of the travelling wave
and causes high frequencies to travel with a different speed than the continuous
wave equation. As a measure of dispersion error, the numerical phase velocity
relative to the correct (continuous) phase velocity is used. The phase velocity
is defined as

c =
ω

k
(3.29)

where k is the wave number and ω is the angular frequency. We will denote the
numerical phase velocity as ĉ with the corresponding numerical wave number k̂.
The relative dispersion error can thus be expressed by

derr =
c

ĉ
(3.30)

We can not use this relation directly, since we need a way to calculate ĉ. In
(Kowalczyk and van Walstijn (2010b), van Walstijn and Kowalczyk (2008)), a
formulation for the relative dispersion errors for arbitrary directions has been
derived as

v(k̂x, k̂y, k̂z) =
ω

k̂c
=

2 arcsin(λ
√
F (sx, sy, sz))

λ
√

(k̂x)2 + k̂y)2 + k̂z)2

(3.31)
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The function F is the general stability condition given as

F (sx, sy, sz) = (sx + sy + sz)− 4a(sxsy + sxsz + sysz) + 16bsxsysz (3.32)

where the following new variables are introduced:

sx = sin2(k̂x∆x/2), (3.33)

sy = sin2(k̂y∆x/2), (3.34)

sz = sin2(k̂z∆x/2) (3.35)

The formula in Eq. (3.31) can be used to obtain information about the dispersion
error in all directions for each of the scheme and is useful for isotropy3 analysis,
which can be important when considering warping (Kowalczyk, 2008a). Warping
is a preprocessing step that can reduce the numerical errors, but since we are
concerned about dynamic scenes in real-time, warping can not be applied and
hence isotropy is not an issue. Nevertheless, it is argued in (Kowalczyk and
van Walstijn (2010b), van Walstijn and Kowalczyk (2008)) that the largest and
smallest dispersion errors occur in the axial, side-diagonal or diagonal direction,
and therefore plotting these direction will give us important knowledge about the
overall dispersion error: by observing the direction where the dispersion error
is biggest, we can determine the upper frequency for which a given dispersion
error is reached (e.g. 2 %). In the following, we will explain how to express the
relative phase velocity error (i.e. dispersion error) in the axial, side-diagonal
and diagonal direction.

For the axial directions, we will consider wave propagation in one of the six
directions where k̂a denotes the wave number. The following cases will be

present for an axial direction:
{
k̂2
x 6= 0, k̂2

y = k̂2
z = 0

}
,
{
k̂2
y 6= 0, k̂2

x = k̂2
z = 0

}
or
{
k̂2
z 6= 0, k̂2

x = k̂2
y = 0

}
. It can then be shown (van Walstijn and Kowalczyk,

2008) that Eq. (3.31) can be re-written as

va(ω) =
(ωT/2)

λ arcsin
√

sin2(ω∆t/2)
λ2

(3.36)

denoting the relative wave velocity in axial directions as a function of angular
frequency.

For the side-diagonal directions, one of the following cases will be present:{
k̂2
x = k̂2

y 6= 0, k̂2
z = 0

}
,
{
k̂2
x = k̂2

z 6= 0, k̂2
y = 0

}
or
{
k̂2
y = k̂2

z 6= 0, k̂2
x = 0

}
. Eq.

3Isotropy means uniformity in all orientations.



3.3 Numerical Dispersion Errors 33

(3.31) can then be formulated as

vsd(ω) =

√
1
2 (ω∆t/2)

λ arcsin
√
Gsd(ω)

(3.37)

expressing the directional dispersion error by denoting the relative wave velocity
in side-diagonal directions as a function of frequency.

For the diagonal directions, we have that
{
k̂2
x = k̂2

y = k̂2
z 6= 0

}
. The expression

for the relative wave velocity is derived in a similar manner as for the side-
diagonal directions, but in this case a third-order polynomial has to be solved in
contrary to a second-order polynomial for the side-diagonal case. The resulting
expression is rather long and has been left out.

In Figure 3.4, the dispersion errors in the axial, diagonal and side-diagonal
directions are depicted.
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Figure 3.4: The plot denoted axial (top), diagonal (middle) and side-diagonal
(bottom) dispersion errors. (Matlab figure kindly obtained from Konrad Kowal-
czyk).
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Chapter 4

Boundary Modelling

The acoustic properties in rooms are highly determined by the geometry and the
boundary material, and therefore proper modelling of boundaries is crucial for
a realistic simulation of the sound field. In the DWG literature, the boundary
termination is typically modelled by a frequency-independent reflection coeffi-
cient or frequency-dependent reflection filter directly attached to a single system
branch (a single node), which imply that the waves are locally governed by a 1-D
wave equation. Also, most methods available for non-staggered grids, including
K-DWM, are also based on 1-D mesh terminations (Huopaniemi et al. (1997)
Kelloniemi (2006), Murphy and Beeson (2007)). This is inconsistent with the
theory and it has been shown that large reflection errors are introduced (Kowal-
czyk, 2008b). In the paper (Botteldooren, 1995), a 3-D boundary model has
been formulated for staggered grids, but it is stated in (Kowalczyk (2008b),
Kowalczyk et al. (2011)) that an additional stability bound is introduced, which
in general also introduces further numerical errors.

Recently, (Kowalczyk et al., 2011) have presented frequency-dependent bound-
aries for the family of 3-D compact explicit schemes based on non-staggered
rectilinear grid, resulting in a digital impedance filter (DIF) boundary model
derived from a 3-D perspective, where the 3-D wave equation is now satisfied
at the boundaries in opposite to the methods using 1-D terminating grids, and
no additional stability bound is introduced. We will in the following review the
theory for the boundary modelling presented in (Kowalczyk et al., 2011) and
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derive the update formulas for al boundary types1.

4.1 Locally Reacting Surfaces and Digital Impedance
Filters

Considering a sound wave travelling along the x-dimension in positive direction,
we can write the impedance defined in Eq. (2.6) as

p = Zvx (4.1)

where p denotes the pressure, Z is the boundary impedance for a right boundary
and vx denotes the velocity normal to this boundary. The wave equation can
be expressed in two linear sound field equations in terms of pressure given by
Eq. (2.3), and velocity given by Eq. (2.4), but only the first may be applied at
a boundary (Kowalczyk, 2008b). Hence, a boundary normal to the x direction
is given as

∂p

∂x
= −ρ∂vx

∂t
(4.2)

with ρ denoting the air density. Differentiating Eq. (4.1) with respect to time
and inserting the result into Eq. (4.2) yields the boundary condition for the
right boundary

∂p

∂t
= −cξ ∂p

∂x
(4.3)

where ξ = Z/ρc is the specific acoustic impedance corresponding to the wall
material modelled. Notice, that we have a formulation in terms of pressure
only.

A surface is called locally reacting (LRS) if the velocity normal to the surface
only depends on the pressure at the considered surface point and not also on
the surrounding surface. In other words, no waves are transmitted along the
wall surface, which is a good approximation for heavy walls, for walls with
low bending stiffness and for porous absorbers (Vorländer, 2007). The LRS is
captured by two conditions, namely that Z is independent of the surrounding
pressure field, and that the 3-D wave equation holds at a boundary. If these
conditions are met, the specific impedance in Eq. (4.3) can be obtained by
rewriting Eq. (2.9) for the impedance at normal incidence (θ = 0◦) as

ξ(z) =
1 +R0(z)

1−R0(z)
(4.4)

1In the work by Kowalczyk, the update formulas for inner edges, inner corners, inner edge-
corners and pyramid boundaries are not explicit given, and have been derived by the author
of this thesis.
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Figure 4.1: a) Plane boundary, b) Edge boundary, and c) Corner boundary.
Room interior nodes are indicated with black-coloured circles, ghost nodes in-
dicated by white-coloured circles. The point that is being updated is indicated
with a black-coloured circle with an surrounding circle.

This is considered a good approximation under the assumption of LRS. Pro-
vided that the reflectance filter represents a passive boundary (|R0(z)| ≤ 1), the
impedance filter can be realised by IIR filters, where both the nominator and
denominator are of the same order N :

ξ(z) =
b0 +B(z)

a0 +A(z)
(4.5)

where

B(z) =

N∑
i=1

biz
−i (4.6)

A(z) =

N∑
i=1

aiz
−i (4.7)

The above filter will be referred to as a Digital Impedance Filter (DIF) and how
to obtain the coefficients ai and bi will be explained in Section 7.1.

4.2 Boundary Formulation for the SLF Scheme

In the following, we will derive the formulas for modelling frequency-dependent
absorbing boundaries using 3-D compact explicit FDTD schemes realised by the
use of DIFs from Eq. (4.5). We will first consider the SLF scheme and examine
the cases concerning plane boundaries, boundary edges and corners depicted in
Figure 4.1.
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4.2.1 Plane Boundaries

The derivation of the update formula for a right plane boundary depicted in
Figure 4.1a relies on combining the discrete wave equation and the boundary
condition formulation in Eq. (4.3) discretised using centered differences, which
yields

pn+1
i,j,k − p

n−1
i,j,k

2∆t
= −cξ

(
pni+1,j,k − pni−1,j,k

2∆x

)
(4.8)

Since we are now modelling a right boundary, the point with index i + 1 for
the x-direction will be located outside of the geometry. These points are called
ghost points and needs to be eliminated. In the following we will derive a for-
mulation for these points. Moreover, the above equation has to combined with
the frequency-dependent digital wall impedance given in Eq. (4.5). We will
therefore transform Eq. (4.8) to the z-domain using the time-shifting property
p(n − k) = z−kP (z), where p(n) is the discrete-time signal and P (z) is the
Z-transform of p(n), which gives us

(z − z−1)Pi,j,k = −λξ(z)(Pi+1,j,k − Pi−1,j,k) (4.9)

The definition Pi,j,k ≡ Pi,j,k(z) is used denoting the z-transform of the discrete
time-domain pressure pni,j,k and λ is the Courant number. Substituting Eq.
(4.5) into Eq. (4.9) yields

(z − z−1)Pi,j,k = λY (4.10)

where

Y =
b0 +B(z)

a0 +A(z)
(Pi−1,j,k − Pi+1,j,k) (4.11)

This formulation can be interpreted as an input-output relation Y = ξ(z)X,

where the transfer function is given as the impedance ξ(z) = b0+B(z)
a0+A(z) , X =

Pi−1,j,k−Pi+1,j,k is the input and Y is the output. Multiplying in the z-domain
corresponds to convolution in the time domain, making the intuition about the
input-output relation even more clear. The fractional formulation of an IIR
filter given in Eq. (4.5) can be formulated in the time-domain as a recursive
filter

y(n) =
1

a0
{b0x(n) + b1x(n− 1) + . . .+ bNx(n−N))

−a1y(n− 1)− a2y(n− 2)− . . .− aNy(n−N)} (4.12)

By applying the z-transformation to this recursive formulation, Eq. (4.11) can
be rewritten explicitly in terms of the input pressure values as

Y =
1

a0
{(b0 +B(z))(Pi−1,j,k − Pi+1,j,k)−A(z)Y } (4.13)
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Again, we have used the definition Y (z) ≡ Y . This explicit filter formulation
can be rewritten in two parts, namely a part consisting of the present input
filter values, and a part consisting of the previous values

Y =

present filter values︷ ︸︸ ︷
b0
a0

(Pi−1,j,k − Pi+1,j,k) +

previous filter values︷︸︸︷
G

a0
(4.14)

where
G = B(z)(Pi−1,j,k − Pi+1,j,k)−A(z)Y (4.15)

Next, substituting Eq. (4.14) into Eq. (4.11) gives us

Pi,j,k(z − z−1) = λ

[
b0
a0

(Pi−1,j,k − Pi+1,j,k) +
G

a0

]
(4.16)

Since the goal is a formulation for the ghost point located at position (i+1, j, k),
we isolate the ghost point Pi+1,j,k

Pi+1,j,k = Pi−1,j,k +
a0

λb0
Pi,j,k(z − z−1) +

G

b0
(4.17)

Such a splitting is necessary in order to separate the current filter values Pi−1,j,k

and Pi+1,j,k from the explicit filter equation. Applying the inverse z-transform
of the above equation finally yields the update equation for the ghost point for
a right boundary

pni+1,j,k = pni−1,j,k +
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gn

b0
(4.18)

The intermediate value g is obtained taking the inverse z-transform of Eq. (4.15)
using the unilateral Z-transform indexed with i = 1 and by also making use of
the convolution theorem

∑∞
i=0 x1(i)x2(n− i) = X1(z)X2(z), we get

gn =

N∑
i=1

[bix
n−i − aiyn−i] (4.19)

where the filter input xn is given by

xn = pni−1,j,k − pni+1,j,k =
a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)− gn

b0
(4.20)

The last equality is obtained by substituting pni+1,j,k from Eq. (4.18) into
pni−1,j,k − pni+1,j,k. Similarly, the inverse z-transform of Eq. (4.14) is

yn =
1

a0
[b0x

n + gn] (4.21)
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denoting the filter output at time step n. The final update scheme is then
obtained by inserting Eq. (4.18) into the update scheme in Eq. (3.8), yielding

pn+1
i,j,k =

[
d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+
λ2

b0
gn +

(
λa0

b0
− 1

)
pn−1
i,j,k

]
/

(
1 +

λa0

b0

)
(4.22)

4.2.2 Remarks

By formulating the update scheme as in Eq. (4.22), we do not need to compute
the ghost points from Eq. (4.18) explicitly. The update equation takes the
3-D wave into account and the filter formulation in Eq. (4.19) assumes LRS as
stated initially.

To summarise, at each time-step the boundary is updated in the following order:

• Update pn+1
i,j,k using the filter value gn.

• Compute xn from pn+1
i,j,k, pn−1

i,j,k and gn.

• Compute yn from xn and gn.

• Update gn+1 from xn and yn.

For each boundary, the N previous values of x and y have to be kept in memory,
corresponding to the filter order.

The introduction of the intermediate variable g might seems unnecessary, since
Pi+1,j,k in Eq. (4.10) could directly be isolated and a different set of update
equation derived. However, it is argued in (Kowalczyk, 2008b) that doing that,
instabilities can arise from numerical round-of errors.

4.2.3 Other Axial Boundaries

The other axial boundaries (left, upper, lower, front, back) proceeds in the same
manner, but involves changes of relevant indexes and changing the flow normal
to the boundary where required. The left boundary node for a plane boundary
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is for example given by

pni+1,j =

[
d1(2pni+1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+
λ2

b0
gn +

(
λa0

b0
− 1

)
pn−1
i,j,k

]
/

(
1 +

λa0

b0

)
(4.23)

where the ghost point is given by

pni−1,j,k = pni+1,j.k +
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gn

b0
(4.24)

The explicit filter difference equation is updated according to

yn =
1

a0
(b0x

n + gn), (4.25)

the intermediate filter value is given by

gn =

N∑
i=1

(bix
n−i − aiyn−i), (4.26)

and the filter input at time n is given by

xn = pni+1,j,k − pni−1,j,k (4.27)

Notice that inserting Eq. (4.24) into Eq. (4.27) yields the same formulation for
the filter input given in Eq. (4.20).

4.2.4 Edges

The ghost points for an outer edge depicted in Figure 4.1b are eliminated in a
similar manner as for the plane boundaries. For a right z-front edge, two ghost
points are eliminated with the use of the two independent boundary conditions
in the x- and y-direction as given by Eq. (4.3)

∂p

∂t
= −cξx

∂p

∂x
,

∂p

∂t
= −cξy

∂p

∂y
(4.28)

By using the discretisation in Eq. (4.8) for both dimensions and following the
same procedure as for the plane boundaries, we get the update formulas for the
two ghost points

pni+1,j,k = pni−1,j,k +
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gnx
b0

(4.29)

pni,j−1,k = pni,j+1,k +
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gny
b0

(4.30)



42 Boundary Modelling

The intermediate values gx and gy are updated according to Eq. (4.19) for each
of the x- and y-dimensions. Substituting the ghost points in the discretised
wave equation in Eq. (3.8) (using the parameters for the SLF scheme) with the
above formulas, we get the update scheme for a right outmost y-edge

pn+1
i,j,k =

[
d1(2pni−1,j,k + 2pni,j+1,k + pni,j,k+1 + pni,j,k−1)

+λ2

(
gnx
b0,x

+
gny
b0,y

)
+

(
λa0,x

b0,x
+
λa0,y

b0,y
− 1

)
pn−1
i,j,k

]
/(

1 +
λa0,x

b0,x
+
λa0,y

b0,y

)
(4.31)

4.2.5 Corners

For an outermost right-upper corner depicted in Figure 4.1c, we have three ghost
points to eliminate in the x-, y- and z-direction. By discretising the independent
boundary formulation for all three dimensions

∂p

∂t
= −cξx

∂p

∂x
,

∂p

∂t
= −cξy

∂p

∂y
,

∂p

∂t
= −cξz

∂p

∂z
(4.32)

and following the same procedure as before, we get the update formula for an
outermost right-upper corner as

pn+1
i,j,k =

[
d1(2pni−1,j,k + 2pni,j+1,k + 2pni,j,k−1)

+λ2

(
gnx
b0,x

+
gny
b0,y

+
gnz
b0,z

)
+

(
λa0,x

b0,x
+
λa0,y

b0,y
+
λa0,z

b0,z
− 1

)
pn−1
i,j,k

]
/(

1 +
λa0,x

b0,x
+
λa0,y

b0,y
+
λa0,z

b0,z

)
(4.33)

The intermediate value g for each of the x- y- and z-dimensions is still updated
according to Eq. (4.19).

4.2.6 Final Remarks

In Figure 4.2a and 4.2b, we see the neighbour points when considering inner
edges and corners. For the SLF scheme, no ghost points apply therefore the
update equation for an inner grid point as given in Eq. (3.8) can be used, since
no impedance boundaries occur. For inner-edge corners depicted in 4.2c, one
impedance boundary occur and hence the update formula for a plane boundary
can be used.
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(i-1,j-1,k-1) (i+1,j-1,k-1)

(i+1,j+1,k-1)

(i-1,j-1,k-1) (i+1,j-1,k-1)

(i+1,j+1,k-1)

(i-1,j-1,k+1) (i-1,j-1,k+1)

a) b)
(i-1,j-1,k-1) (i+1,j-1,k-1)

(i+1,j+1,k-1)

(i-1,j-1,k+1)

c)

Figure 4.2: a) Inner right-front z-edge, b) Inner right-front z corner, and c)
Inner right-front z edge-corner. Room interior nodes are indicated with black-
coloured circles, ghost nodes indicated by white-coloured circles. The point that
is being updated is indicated with a black-coloured circle with an surrounding
circle.

a)
(i-1,j-1,k-1) (i+1,j-1,k-1)

(i+1,j+1,k-1)

(i-1,j-1,k+1)

b)
(i-1,j-1,k-1) (i+1,j-1,k-1)

(i+1,j+1,k-1)

(i-1,j-1,k+1)

(i-1,j-1,k-1)
c)
(i+1,j-1,k-1)

(i+1,j+1,k-1)

(i-1,j-1,k+1)

Figure 4.3: Right-plane boundary point depicted with corresponding neighbour
points. Room interior nodes are indicated with black-coloured circles, ghost
nodes indicated by white-coloured circles. The point that is being updated is
indicated with a black-coloured circle with an surrounding circle. a) All 9 ghost
point, b) interpolated side-diagonal points, and c) interpolated diagonal points.

4.3 General Boundary Formulation for the Gen-
eral Family of 3-D Non-Staggered Compact
Explicit Schemes

In the previous section, the general boundary formulation was derived for the
standard leapfrog scheme. In this section, we will extend the formulation such
that the general family of 3-D non-staggered compact explicit schemes from Eq.
(3.8) is supported.
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4.3.1 Plane Boundaries

Let us consider a right boundary point for a boundary plane as depicted in
Figure 4.3. For such a point there are nine ghost points outside the modelled
space and these points should be eliminated in such a way that a physical correct
absorption occur. We will divide the elimination into three steps (Kowalczyk
and van Walstijn (2010b), Kowalczyk and van Walstijn (2011)): For an axial
ghost point (Fig. 4.1a), 2) for four side-diagonal ghost points (Fig. 4.3b) and 3)
for four diagonal ghost points (Fig. 4.3c). The first elimination is the same as
for the SLF scheme given by Eq. (4.22). For the second elimination, we apply a
linear interpolation of all the side-diagonal grid points lying inside and outside
the modelled space:

p̃ni−1,j,k =
1

4
(pni−1,j+1,k + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j,k−1) (4.34)

p̃ni+1,j,k =
1

4
(pni+1,j+1,k + pni+1,j−1,k + pni+1,j,k+1 + pni+1,j,k−1) (4.35)

where p̃ni−1,j,k and p̃ni+1,j,k are the interpolated pressure values. For elimination
step 3, we perform a similar interpolation of all the diagonal points lying inside
and outside the modelled space:

p̄i−1,j,k =
1

4
(pni−1,j+1,k+1 + pni−1,j−1,k+1

+pni−1,j+1,k−1 + pni−1,j−1,k−1) (4.36)

p̄i+1,j,k =
1

4
(pni+1,j+1,k+1 + pni+1,j−1,k+1

+pni+1,j+1,k−1 + pni+1,j−1,k−1) (4.37)

where p̄i−1,j,k and p̄i+1,j,k are the interpolated pressure values. Let us take a
closer look at these interpolated values in 2-D for simplicity. In 2-D, we have
three ghost points as illustrated in Figure 4.4. The interpolated points p̃i−1,j

and p̃i+1,j are lying on the circle going through the diagonal points used for the
interpolation, and hence we have the same distance to the interpolated points as
to the original points pi−1,j−1, pi−1,j+1, pi+1,j+1 and pi+1,j−1. This is important
for the numerical stability of the scheme, since having individual points in the
grid located with a different grid spacing than the rest of the point can violate
the stability condition. In 3-D, the same distance property for the interpolated
points is valid, since p̃i−1,j,k and p̃i+1,j,k are located on the sphere going through
all eight side-diagonal ghost points, whereas p̄i−1,j,k and p̄i+1,j,k are located on
the sphere going through all eight diagonal ghost points, as depicted in Figure
4.3 b) and c).

Now, since the interpolated boundary points are located across the boundary, we
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Figure 4.4: Right edge boundary in 2-D with interpolated neighbour points.
Room interior nodes are indicated with black-coloured circles, ghost nodes in-
dicated by white-coloured circles and the point being updated is indicated with
a black-coloured circle with an surrounding circle. The interpolated points are
indicated with a square.

can perform the elimination of the ghost points as done in the previous section

pni+1,j,k = pni−1,j,k +
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gna
b0

(4.38)

p̃ni+1,j,k = p̃ni−1,j,k +
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gnsd
b0

(4.39)

p̄ni+1,j,k = p̄ni−1,j,k +
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gnd
b0

(4.40)

We have three intermediate filter values gna , gnsd and gnd , where the subscripts
denote the axial, side-diagonal and diagonal filter values, respectively. When
formulating the filter input values x, we notice that the interpolated values are
eliminated:

xna = pni−1,j,k − pni+1,j,k =
a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)− gna

b0
(4.41)

xnd = p̃ni−1,j,k − p̃ni+1,j,k =
a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)− gnd

b0
(4.42)

xnsd = p̄ni−1,j,k − p̄ni+1,j,k =
a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)− gnsd

b0
(4.43)

We can formulate the interpolated pressure values in Eq. (4.39) in terms of the
points lying on the original rectangular grid as

1

4
(pni+1,j+1,k + pni+1,j−1,k + pni+1,j,k+1 + pni+1,j,k−1) =

1

4
(pni−1,j+1,k + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j,k−1) (4.44)

+
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gnsd
b0
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and with a similar formulation for the diagonal interpolated ghost point in Eq.
(4.40)

1

4
(pni+1,j+1,k+1 + pni+1,j−1,k+1 + pni+1,j+1,k−1 + pni+1,j−1,k−1) =

1

4
(pni−1,j+1,k+1 + pni−1,j−1,k+1 + pni−1,j+1,k−1 + pni−1,j−1,k−1) (4.45)

+
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gnd
b0

Isolating one of the ghost points in each of the equations (4.44) and (4.45), and
inserting these in the compact scheme in Eq. (3.8) together with (4.38) yields

pn+1
i,j,k =

[
d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1 +

gna
b0

)

+d2(2pni−1,j+1,k + 2pni−1,j−1,k + 2pni−1,j,k+1 + 2pni−1,j,k−1

+pni,j+1,k+1 + pni,j+1,k−1 + pni,j−1,k+1 + pni,j−1,k−1 + 4
gnsd
b0

) (4.46)

+d3(2pni−1,j+1,k+1 + 2pni−1,j−1,k+1 + 2pni−1,j+1,k−1 + 2pni−1,j−1,k−1 + 4
gnd
b0

)

+d4p
n
i,j,k +

(
λa0

b0
− 1

)
pn−1
i,j,k

]
/

(
1 +

λa0

b0

)
This formulation would require, that three intermediate filter values should be
implemented for each boundary node, but since the filter impedance coefficients
bi and ai in the formulation of g in Eq. (4.19) are the same for all three
boundaries (the boundaries belong to the same surface, and we enforce LRS),
the only difference is the input signal x and, hence, the output signal y. By
moving the g’s outside the parenthesis, we can write the above equation as

pn+1
i,j,k =

[
d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+2d2(pni−1,j+1,k + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j,k−1)

+d2(pni,j+1,k+1 + pni,j+1,k−1 + pni,j−1,k+1 + pni,j−1,k−1) (4.47)

+2d3(pni−1,j+1,k+1 + pni−1,j−1,k+1 + pni−1,j+1,k−1 + pni−1,j−1,k−1)

+d4p
n
i,j,k +

λ2

b0
gn +

(
λa0

b0
− 1

)
pn−1
i,j,k

]
/

(
1 +

λa0

b0

)
where the three intermediate filters have been grouped into one filter g given as

gn = (1− 4a+ 4b)
gna
b0

+ (4a− 8b)
gnsd
b0

+ 4b
gnd
b0

(4.48)
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The added λ2 in Eq. (4.47) and the coefficients in front of the intermediate
filters in Eq. (4.48) stems from the scheme parameter d1, d2 and d3 defined in
Eq. (3.9).

The intermediate filter is defined in Eq. (4.19) as

gn =

N∑
i=1

[bix
n−i − aiyn−i] (4.49)

and since the impedance filter g is a linear system (consists only of sums of
scaled input and output values), the superposition principle can be applied2,
such that the weighting coefficients in front of the filters gna , gna and gna can be
moved into the sum, leading to the filter input values

xn = (1− 4a+ 4b)xna + (4a− 8b)xnsd + 4bxnd (4.50)

Inserting the definition of xa, xsd and xs from Eq. (4.20) into the above equa-
tion, gives

xn = (1− 4a+ 4b)

(
a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)− gna

b0

)
+(4a− 8b)

(
a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)− gnd

b0

)
+4b

(
a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)− gnsd

b0

)
=

a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)

(
(1− 4a+ 4b) + (4a− 8b) + 4b

)
−(1− 4a+ 4b)

gna
b0
− (4a− 8b)

gnd
b0
− 4b

gnsd
b0

=
a0

λb0
(pn+1
i,j,k − p

n−1
i,j,k)− gn

b0

The formulation after applying the superposition principle is the same as for the
individual filters, hence applying the superposition principle for ya, ysd and yd
will also take the same form as Eq. (4.21). We can therefore update the filter
values g and the corresponding x and y values using the usual formulas.

4.3.2 Outer Corner

For an outer corner, 19 ghost points have to be eliminated as depicted in Figure
4.5. Three boundary conditions apply as given in Eq. (4.32), and for eliminating

2Stating that the net response of two or more stimuli to a system is the sum of each of the
stimuli observed individually
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(i-1,j-1,k-1) (i+1,j-1,k-1)

(i-1,j-1,k+1)

(i+1,j+1,k-1)

Figure 4.5: Outer outmost upper-right corner. Room interior nodes are indi-
cated with black-coloured circles, ghost nodes indicated by white-coloured circles
with the corner ghost point depicted with a thicker surrounding and edge ghost
points with a grey surrounding. The point that is being updated is indicated
with a black-coloured circle with an surrounding circle.

the diagonal and side-diagonal boundary points, the same procedure as for the
boundary plane is applied, but now for all three boundaries. The additional
condition

∂p3

∂x∂y∂z
= 0 (4.51)

holds at the corner (indicated by ghost points with a black bold surrounding),
and

∂p2

∂x∂y
= 0,

∂p2

∂x∂z
= 0,

∂p2

∂y∂z
= 0 (4.52)

holds at boundary edges, which guarantees local coherence between two meeting
boundaries. Discretising Eq. (4.51) using centered differences yields

pni+1,j+1,k+1 = pni+1,j+1,k−1 + pni+1,j−1,k+1 + pni−1,j+1,k+1 + pni−1,j−1,k−1

− pni+1,j−1,k−1 − pni−1,j+1,k−1 − pni−1,j−1,k+1 (4.53)

and discretising the edge ghost points in (4.52) (indicated by ghost points with
a grey bold surrounding) for an x,y (z-direction), x,z (y-direction) and y,z-
boundary (x-direction) using centered differences, we get

pni+1,j+1,k = pni+1,j−1,k + pni−1,j+1,k − pni−1,j−1,k (4.54)

pni+1,j,k+1 = pni+1,j,k−1 + pni−1,j,k+1 − pni−1,j,k−1 (4.55)

pni,j+1,k+1 = pni,j+1,k−1 + pni,j−1,k+1 − pni,j−1,k−1 (4.56)

For the outermost right-upper corner we would then use Eq. (4.53) for elimi-
nating the corner ghost point, Eq. (4.54)-(4.56) for edge ghost points and Eq.
(4.38), (4.44) and (4.45) with indexes corresponding to the x, y and z-dimension
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(i-1,j-1,k-1) (i+1,j-1,k-1)

(i-1,j-1,k+1)

(i+1,j+1,k-1)

Figure 4.6: Outmost right z-edge. Room interior nodes are indicated with black-
coloured circles, ghost nodes indicated by white-coloured circles, with edge ghost
points depicted with grey surroundings. The point that is being updated is
indicated with a black-coloured circle with an surrounding circle.

for the impedance boundaries. This yields the update formula for the upper-
outmost corner:

pn+1
i,j,k =

[
2d1(pni−1,j,k + pni,j−1,k + pni,j1,k−1)

+4d2(pni−1,j−1,k + pni−1,j,k−1 + pni,j−1,k−1) + 8d3(pni−1,j−1,k−1)

+d4p
n
i,j,k + λ2

(
gnx
bx,0

+
gny
by,0

+
gnz
bz,0

)
(4.57)

+

(
λax,0
bx,0

+
λay,0
by,0

+
λaz,0
bz,0

− 1

)
pn−1
i,j,k

]
/

(
1 +

λax,0
bx,0

+
λay,0
by,0

+
λaz,0
bz,0

)

4.3.3 Outer Edges

For an outer edge, two boundary conditions applies as depicted in Figure 4.6. For
the outermost right x,y-edge, we substitute the edge ghost points pni+1,j+1,k−1,
pni+1,m+1,j and pni+1,j+1,k+1 coloured with grey surroundings using the local co-
herence equation (4.54). The ghost points depicted with white-coloured circles
are eliminated using the interpolated formulas given by Eq. (4.38), (4.44) and
(4.45) with indexes corresponding to the dimension considered. This leads to
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Figure 4.7: Inner points. a) Right x, z front edge with 3 edge ghost points, b)
frontmost right upper corner with 1 corner ghost point, c) Lower y, z frontmost
edge-corner with 11 ghost points. Room interior nodes are indicated with black-
coloured circles, ghost nodes indicated by white-coloured circles. The point that
is being updated is indicated with a black-coloured circle with an surrounding
circle.

the update formula for the outermost right edge:

pn+1
i,j,k =

[
d1(2pni−1,j,k + 2pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+d2(4pni−1,j−1,k + 2pni−1,j,k−1 + 2pni−1,j,k+1 + 2pni,j−1,k−1 + 2pni,j−1,k+1)

+4d3(pni−1,j−1,k−1 + pni−1,j−1,k+1)

+d4p
n
i,j,k + λ2

(
gnx
bx,0

+
gny
by,0

)
(4.58)

+

(
λax,0
bx,0

+
λax,0
bx,0

− 1

)
pn−1
i,j,k

]
/

(
1 +

λax,0
bx,0

+
λay,0
by,0

)

4.3.4 Inner Corners and Edges

Inner edges and inner corners are depicted in Figure 4.7a and 4.7b, respectively.
No impedance boundaries apply, since we do not consider boundary impedances
in oblique directions, and neighbour points exists in the 6 axial direction. How-
ever, in contrary to the SLF scheme, we have one corner ghost point for an inner
corner, which can be eliminated using Eq. (4.53) for three meeting boundaries.
For an inner edge, three ghost points have to be eliminated using one of the
equations (4.54)-(4.56) for two meeting boundaries. Considering a frontmost
right-upper inner corner (Fig. 4.7b), the ghost point pi+1,j−1,k+1 is eliminated
using

pni+1,j−1,k+1 = pni+1,j+1,k+1 + pni+1,j−1,k−1 + pni−1,j+1,k−1 + pni−1,j−1,k+1

− pni+1,j+1,k−1 − pni−1,j+1,k+1 − pni−1,j−1,k−1



4.3 General Boundary Formulation for the General Family of 3-D
Non-Staggered Compact Explicit Schemes 51

yielding the update equation

pn+1
i,j,k = d1(pni+1,j,k + pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+d2(pni+1,j,k+1 + pni+1,j,k−1 + pni+1,j+1,k + pni+1,j−1,k

+pni,j+1,k+1 + pni,j+1,k−1 + pni,j−1,k+1 + pni,j−1,k−1 (4.59)

+pni−1,j,k+1 + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j−1,k)

+2d3(pni+1,j+1,k+1 + pni+1,j−1,k−1 + pni−1,j−1,k+1 + pni−1,j+1,k−1)

+d4p
n
i,j,k − pn−1

i,j,k

For a right x, z frontmost edge (Fig. 4.7a), the ghost points pi+1,j−1,k−1,
pi+1,j−1,k and pi+1,j−1,k+1 are eliminated using Eq. (4.54) for two meeting
boundaries in the y-direction

pni+1,j−1,k = pni+1,j+1,k + pni−1,j−1,k − pni−1,j+1,k

Substituting the three ghost points using the above equation for the indexes
k − 1, k and k + 1 gives us the update equation

pn+1
i,j,k = d1(pni+1,j,k + pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+d2(pni+1,j,k+1 + pni+1,j,k−1 + 2pni+1,j+1,k + pni,j+1,k+1 + pni,j.1,k+1

+pni,j+1,k−1 + pni,j−1,k−1 + pni−1,j,k+1 + pni−1,j,k−1 + 2pni−1,j−1,k)

+2d3(pni+1,j+1,k+1 + pni+1,j+1,k−1 + pni−1,j−1,k+1 + pni−1,j−1,k−1)

+d4p
n
i,j,k − pn−1

i,j,k (4.60)

4.3.5 Inner Edge-Corner

An inner edge-corner is depicted in Figure 4.7c, for which one impedance bound-
ary occur. In Appendix 9.2, the update formula has been derived from the basic
inner point update equation (3.8). Another way around is to use the update
formula for a plane as a starting point – doing that, only two ghost points have
to be eliminated for which one of Eq. (4.54)-(4.56) is used for two meeting
boundaries. For a right y, z frontmost inner edge-corner, we can use the update
equation for a right plane given in Eq. (4.47), and then eliminating the ghost
points pi,j−1,k−1 and pi−1,j−1,k−1 using Eq. (4.56) for the x-direction. This
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(i-1,j-1,k-1) (i+1,j-1,k-1)

(i+1,j+1,k-1)

(i-1,j+1,k-1)

Figure 4.8: Pyramid boundary. Room interior nodes are indicated with black-
coloured circles, ghost nodes indicated by white-coloured circles. The point that
is being updated is indicated with a black-coloured circle with an surrounding
circle.

gives us the update formula

pn+1
i,j,k =

[
d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+2d2(pni−1,j+1,k + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j,k−1

+pni,j+1,k−1 + pni,j−1,k+1)

+4d3(pni−1,j−1,k+1 + pni−1,j+1,k−1) (4.61)

+d4p
n
i,j,k +

λ2

b0
gn +

(
λa0

b0
− 1

)
pn−1
i,j,k

]
/

(
1 +

λa0

b0

)

4.3.6 Pyramid Boundary

Finally, a pyramid boundary is depicted in Figure (4.8). This point type has
not been implemented, but is given for completeness:

pn+1
i,j,k = d1(pni+1,j,k + pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+d2(pni,j+1,k+1 + pni,j+1,k−1 + pni,j−1,k+1 + pni,j−1,k−1

+2pni−1,j+1,k + 2pni+1,j−1,k + 2pni−1,j,k+1 + 2pni+1,j,k−1)

+d3(2pni−1,j−1,k+1 + 2pni−1,j+1,k−1 + 2pni+1,j−1,k−1 (4.62)

+pni−1,j−1,k−1 + pni−1,j+1,k+1)

+d4p
n
i,j,k − pn−1

i,j,k
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4.3.7 Final Remarks

Having derived 8 families of update formulas for all types of boundary points,
we have 8 outer corners, 12 outer edges, 6 plane boundaries, 8 inner corners, 12
inner edges and 24 inner edge-corners and 24 pyramid boundaries, giving a total
of 96 different update formulas including inner points. The DIF model (i.e. the
model concerning boundary points having one or more impedance boundaries)
requires updating

1. The pressure pn+1
i,j,k using one of the 40 impedance boundary update for-

mulas,

2. The input signal xn

3. The output signal yn

4. The impedance filter gn+1

By looking at the formulas for these quantities corresponding to Eq. (4.20),
(4.21), (4.19) and a given boundary update formula (e.g. Eq. (4.61)), we notice
that gn is used for updating pn+1

i,j,k, pn+1
i,j,k is used for updating xn and yn, and xn

and yn are used for updating gn+1. Therefore, the update should be done in
the order of presentation above.

4.4 Scene Geometry

The goal of this project is to simulate the sound field in physical models occur-
ring in the real-word. Therefore we need the ability to model arbitrary geome-
tries and for that we have created a tool for importing CAD (Computer-Aided
Design) scenes. The process includes the task of discretising the CAD model
in a suitable format for the FDTD solver. The scene data needed depends on
the scheme used, where the SLF scheme only needs the axial neighbour points,
whereas for the general compact explicit schemes needs a combination of axial,
diagonal and side-diagonal points. Functionality from the RAVEN3 framework
developed at ITA primarily for use with geometrical methods has been used for
importing and processing CAD scenes. The procedure taken for discretising a

3RAVEN (Room Acoustics for Virtual ENvironments) is a hybrid room acoustics simulation
software developed at ITA, combining deterministic image source method with a stochastic
ray tracing algorithm in order to compute impulse responses in real-time which reach state-
of-the-art room acoustics simulation standards.
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scene works as follows: First, a start point inside the scene is chosen and all 26
neighbour coordinates are computed from the spatial resolution. If a coordinate
is inside the geometry, a point is created and neighbour information is updated,
otherwise the point corresponding to the coordinate is denoted as a ghost point.
The algorithm is outlined below:

1: Initialisation:
2: W = W1 = ∅
3: Choose a starting point x0 = (x0, y0, z0) inside the scene and add a GridPoint

with starting point x0 and all neighbours set to 0 to the set W .
4: Loop:
5: while W 6= ∅ do
6: for all GridPoint p ∈W do
7: By using a step size of ∆x, add to the set U the coordinates of all p’s

26 neighbours in the axial, diagonal and side-diagonal directions.
8: for all neighbour points u ∈ U do
9: if u is inside the geometry then

10: Add a GridPoint pnew with coordinate u to W1 and update
the neighbour indexes pointing at the parent neighbour p.
Set all other neighbour indexes to 0, and update p with
the id to the new neighbour pnew.

11: else
12: Update the attribute material for the parent point p cor-

responding to the material encountered.
13: end if
14: end for
15: Set U = ∅
16: end for
17: Set W = W1.
18: end while

The method works, but some restrictions on the scene must be made, as we
will explain in the following. A discretisation of a 2-D scene using the above
algorithm is depicted in Figure 4.9a. The original scene is indicated by the solid
line and includes sharp and soft edges with a mixture of concave and convex
shapes. The lower left corner point has coordinate (0, 0) and the grid spacing
is ∆x. The geometry is meshed as a so-called staircase, and the grid mesh
procedure does not know anything about the type of points it encounters, it
only checks whether a staircase path exists to a neighbour for a given resolution
step. The discretisation looks fine at first sight, but problematic points have
been introduced. First, let us consider the point b. The point only has a single
neighbour in the axial directions located at coordinate (6,6) corresponding to
a string (with no thickness). The corresponding scenario in 3-D would be a
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Figure 4.9: a) A meshed scene. The solid line is depicting the scene geometry
and the dots are the grid points after meshing. b) Example of a discretised
geometry non allowed in the FDTD framework.

string or a plane with no thickness, and since wave propagations in spatial 3-D
environments should be modelled, these point types are not allowed. We can
imagine many situations, where similar problems can occur and another example
can be seen in Figure 4.9b. In 3-D, many more of these boundary types are
possible. In fact, 226 point combinations can be present after having meshed
the scene, out of which only 95 combinations corresponding to the boundary
types explained in the previous sections are handled by the FDTD framework.
If all CAD scene geometries should be handled, we would need to adjust the
scene after meshing to only include points corresponding to the 95 point types,
but it is not a trivial task. Instead, we will restrict the CAD scenes such that
only allowed point types are present in the scene after discretisation, also making
the point classification an easier task (see Section 6.4).

An issue concerning ambiguity can be seen when considering the point c. The
geometry has a concave notch in the geometry of width ∆x being ignored by the
meshing. These kinds of problems occurs when the geometry is more detailed
than the spatial resolution allows, like in this case, where the neighbour points c’
and c” will be considered as neighbours to the point c. A solution to the problem
of “jumping over” geometric elements of sizes equal or less than the spatial
resolution can be solved by shooting a ray in the direction of the neighbour
elements and see if a boundary is hit. The drawback of shooting a ray is that
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small obstacles, that should be ignored, may be hit, and hence be modelled with
size ∆x in the given direction. Since obstacles with sizes much smaller than the
wave length (and hence also the spatial sampling rate ∆x) can be neglected,
this might lead to unprecise simulations.

Finally, a remark is made on the neighbour relation at oblique boundaries. Be-
cause the FDTD framework does not incorporate impedance boundaries across
oblique boundary, the point a’ should be considered as a ghost point from the
point of view of a. This is handled by a post-processing step used for classify-
ing the points which is explained in Section 6.4, and no precautions need to be
taken.



Chapter 5

GPU implementation

This section will consider the GPU implementation of the 3D compact explicit
schemes with boundaries modelled as DIFs. First, CUDA (Compute Unified De-
vice Architecture) is introduced and the differences between Graphic Processing
Units and Central Processing Units is outlined. Having settled the theory, three
different GPU FDTD implementations are examined.

5.1 Introduction to CUDA

As the name suggests, Graphics Processing Units (GPUs) was originally de-
signed for graphics processing. But especially with the introduction of CUDA
in 2007 (NVidia, 2011b), the application of GPU programming has evolved to
other areas as well, including image and video processing, computational biol-
ogy and chemistry, fluid dynamics simulation, CT image reconstruction, seismic
analysis, ray-tracing, and much more. CUDA is NVidia’s parallel computing
architecture and it enables dramatic increase in computing performance by har-
nessing the power of the GPU.

The main difference between CPU and GPU is, that a CPU is expected to
execute a single task a fast as possible, whereas a GPU must be capable of
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Figure 5.1: Architecture of a a) CPU, and b) GPU. (NVidia, 2011b)

Figure 5.2: Typical GPU consisting of several streaming multiprocessors (SM)
each having access to (fast) on-chip and (slow) global memory, the latter shared
between all SM. Source: (Savioja, 2010)

executing a maximum amount of tasks as fast a possible. Therefore, the CPU
uses more data transistors on tasks related to flow control (branching) and data
caching, where the GPU is mainly designed such that more data transistors are
devoted to data processing. The difference is depicted in Figure 5.1, where many
more arithmetic logic units (ALU) are used in the GPU, but comes with the cost
of fewer and smaller cache and control units per ALU. The general architecture
of the GPU can be seen in Figure 5.2. A number of streaming multiprocessors are
connected through an interconnection network, each having a number of parallel
streaming processors (SP) sharing a on-chip memory where data exchange can
be done fast. Data exchange between different SMs are done using the global
of-chip memory (consisting of DRAM), which are slow compared to the on-chip
memory. A SIMT (single instruction multiple thread) interface takes care of
running the threads in parallel. The computational model is based on threads
that can be run in parallel on the GPU. The programmer writes a kernel that
describes the behaviour of the threads and enough threads are launched. The
threads are grouped together, where it should be enforced, that each thread in
the group has the same execution pattern for optimal performance. If branching
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occurs for a given thread, all other threads in a group will have to wait for that
thread to finish. Context switches – unlike normal CPU’s – can be done without
overhead, and therefore more threads that available processors should be feed to
the GPU, ensuring that no processors are idle. The use of cache can provide fast
access to data, which has been introduced with the Fermi hardware, however
the code should still be written to take advantage of the cache utilisation by
fetching data with addresses not too far from each other.

The limitation of GPUs is, that it is difficult to fully utilise the capability in
practice, since keeping all threads busy may be limited by the resources available
and the latency when fetching data from global memory. Also the memory
link in between the global memory and the multiprocessors can quickly become
a bottleneck, even though recent GPUs having bandwidths of 80-180 GB/s.
Consider for example a scene consisting of one million nodes are used with an
update range of 44.1 kHz. Then a throughput of 3 layers/update× 44100 Hz×
4 bytes/nodes × 106 nodes/layer ≈ 500 GB/s is required, which is impossible
with recent GPUs.

5.2 The CUDA Programming Model

In CUDA, the computing system consists of a host and a device. The host is a
traditional Central Processing Unit (CPU), where parts of the problem to solve
exploits much logic control and less or no parallelism. The device is the domain
of the GPU, consisting of massively parallel processors equipped with a large
number of arithmetic execution units. The host code is implemented in C/C++,
whereas the device code is written using ANSI C code extended with keywords
for labelling data-parallel functions, called kernels, and their associated data
structures. The terms grid, blocks and threads are the basic quantities used
when executing a kernel. When launching a CUDA kernel, a grid of threads is
executed by the kernel and since all the launched threads are executed using the
same kernel, the threads need to rely on unique coordinate to distinguish the
individual threads. For this purpose the CUDA runtime system uses a two-level
hierarchy consisting of unique coordinates called blockId and threadId. These
build-in variables are initialised at run-time and can be accessed within the
kernel. A grid can be one or two-dimensional containing a number of blocks,
where each block contains a one- two- or three-dimensional array of threads. The
number of threads must be the same for all the blocks in the grid. In Figure 5.3
a 3×2 grid is shown giving a total of 6 blocks each having 12 threads ordered in
a 4× 3 dimensional grid. The dimensions of the block can be arbitrary chosen
as long as the number of thread slots do not exceed the maximum number of
allowed threads specified by the hardware.
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Figure 5.3: Grid of thread block. Source: (NVidia, 2011b).

The threads launched for each block are grouped into warps. A warp consists
of 32 threads indexed from n to n+ 31. If branch divergence should be avoided,
all threads in a warp have to execute the same execution pattern. If one thread
executes another execution pattern than the rest of the threads (e.g. due a
conditional branch), all other threads in the warp will stall and wait for the
thread to finish before continuing.

The GPU has several types of memory available for the programmer and an
overview is given below:

Global memory is accessible by all threads in the kernel and can be written
and read by the host by calling API function. Global memory is imple-
mented as DRAM and is typically the slowest of the memory types. For
GPU’s of compute capability ≥ 2.0, a cache has been introduced, making
access to commonly used data faster.

Shared memory is allocated to thread blocks and can only be written and
read by the device. Shared memory resides physically on the GPU as
opposed to the global memory residing in off-chip DRAM and provides
efficient means for threads to cooperate within a block by sharing the
result of their work.
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Constant memory is accessible by all threads in the kernel and can be written
and read by the host. The constant memory is stored on chip and is
suitable for storing constants.

Texture memory is accessible by all threads in the kernel and is designed for
memory access patterns that exhibit a great deal of (2D) spatial locality.
Texture memory is global memory, but texture are accessed through a
dedicated on chip read-only cache.

Registers are allocated to individual threads and each thread can only access
its own registers. The register file is the largest and fastest on-chip memory
and is used to hold frequently accessed variables local to each thread.

Choosing one of the faster memory over global memory can in some applications
speed up the performance, and we will discuss optimisations in Section 5.3.

The main memory resource on the GPU is the global memory which the pro-
grammer needs to allocate in a similar manner as on the CPU using

cudaMalloc (void∗∗ devPtr , s i z e t s i z e )

where devPtr will point to the allocated memory of size size after invocation.
Since the device memory is separated from the host memory, the data has to
be copied from the host to the device, and for this task, CUDA provides the
function

cudaMemcpy(void∗ dst , const void∗ src , s i z e t count ,
enum cudaMemcpyKind)

The function copies count bytes from the source location src to the destination
location dst. The source can for example be the data on the host and the
destination being the location on the device returned by cudaMalloc.

5.3 CUDA FDTD Implementation

Having founded the ideas behind CUDA programming, we are ready to go
through the implementation of the FDTD solver using the GPU. The first impor-
tant thing to notice about the explicit schemes is, that the nodal points needed
for computing the next state only depend on previous time steps and therefore
no dependencies between nodal points are present. In the following pseudo code,
the inner loop can be performed in any order, meaning that each point in the ge-
ometry can be computed independently.
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1: for n=1 to N do
2: for i=0 to D do
3: pni = pn−1

i−1 + pn−1
i+1 − p

n−2
i

4: end for
5: end for

This makes the scheme highly suitable for parallel programming. By using a
single thread for each node, the computations can be done in parallel. In the
simple case given above, the boundary cases are not considered. The update
formulas for computing the pressure values at boundaries and updating the DIFs
are different for each type of boundary (inner/outer corner, inner/outer edges,
etc), but also distinction between the position of the boundary type (left, right,
upper, lower, etc) must be made. All these boundary cases must be determined
in the code by using control statements, and will lead to branch divergence if
care is not taken.

5.3.1 Kernel calls

We have made three different implementations for determining which approach
yield the most performance:

The first implementation consists of one main kernel responsible for computing
all grid points including updating the DIFs. For minimising branch divergence,
the grid points are ordered with respect to grid point type, which means that
threads in a warp will follow the same patterns in most cases. Examples for
cubic rooms can be seen in Table 7.6 from Chapter 7, where the number of
point types are depicted. Except from the corner points, we can assume little
branch divergence, since a warp consists of 32 threads and most of these will
exhibit the same execution pattern for all threads.

The second implementation also consists of one main kernel responsible for
computing all grid points, but updating the DIFs is done in a separate kernel.
This should result in a lower register usage for the main kernel, allowing for
more parallel threads. For an outer corner, this would imply updating the part
of Eq. (4.57) with no impedance calculations involved in the main kernel, and
in an external kernel, the value computed in the main kernel is updated with
the remain part of the update equation. Hence, the main kernel will calculate

pn+1
i,j,k = 2d1(pni−1,j,k + pni,j−1,k + pni,j1,k−1)

+4d2(pni−1,j−1,k + pni−1,j,k−1 + pni,j−1,k−1) (5.1)

+8d3(pni−1,j−1,k−1) + d4p
n
i,j,k
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and the DIF kernel will calculate

pn+1
i,j,k =

[
pn+1
i,j,k + λ2

(
gnx
bx,0

+
gny
by,0

+
gnz
bz,0

)
(5.2)

+

(
λax,0
bx,0

+
λay,0
by,0

+
λaz,0
bz,0

− 1

)
pn−1
i,j,k

]
/

(
1 +

λax,0
bx,0

+
λay,0
by,0

+
λaz,0
bz,0

)

and update the impedance filter gn+1. Since the two kernels are dependent on
each other, the kernels must be executed sequentially.

For the third implementation, we will sort the grid points into seven classes
corresponding to each of the family types. We will then launch seven individual
kernels – one for each of the family point types. Since the kernels are inde-
pendent of each other, the kernels can be processed in parallel. Kernel calls
are asynchronous which means that control is immediately returned to the host
after a kernel launch, but kernels are not computed in parallel unless explicitly
stated. For GPU’s of compute capability ≥ 2, kernels can be launched in par-
allel by using a stream id as a third parameter to the kernel. Inside each class
we will again sort the points with regard to their types for minimising branch
divergence.

Below, the three implementations are outlined:
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// v e r s i o n 1
int main ( )
{

. . .
while ( n < numIterat ions ) {

h s r c I n f o = getSource In fo ( inputS igna lS r c ) ;
h rceCoords = getReceiverCoord ( inputSigna lRce ) ;

cudaMemcpyAsync ( d s r c I n f o , h s r c I n f o , s i z eS r c ,
cudaMemcpyHostToDevice ) ;

cudaMemcpyAsync ( d rceCoords , h rceCoords , s izeRce ,
cudaMemcpyHostToDevice ) ;

for (nGPU = n ; nGPU < n + GPUchunk ; nGPU++) {
// main k e r n e l
so lve<<<dimGrid1 , dimBlock1>>>(a l lGr idPo int s , p0 , p1 )

// k e r n e l updat ing sources and r e c e i v e r s
updateSrcRce<<<dimGrid2 , dimBlock2>>>

( source In fo , rece iverCoord , p0 )

// update p o i n t e r s f o r next time s t e p
f loat ∗ tmp pointer = p1 ;
p1 = p0 ;
p0 = tmp pointer ;

}
n = nGPU;

cudaMemcpyAsync ( h s r c I n f o , d s r c I n f o , s i z eS r c ,
cudaMemcpyDeviceToHost ) ;

cudaMemcpyAsync ( h rceCoords , d rceCoords , s izeRce ,
cudaMemcpyDeviceToHost ) ;

. . .
}

}

// v e r s i o n 2
int main ( )
{

. . .
while ( n < numIterat ions ) {

. . . // same as v e r s i o n 1
for (nGPU = n ; nGPU < n + GPUchunk ; nGPU++) {

// main k e r n e l
so lve<<<dimGrid1 , dimBlock1>>>(a l lGr idPo int s , p0 , p1 , p2 )

// DIF k e r n e l



5.3 CUDA FDTD Implementation 65

updateDIFs<<<dimGrid2 , dimBlock2>>>(boundGridPoints , p0 , p2 )

// k e r n e l updat ing sources and r e c e i v e r s
updateSrcRce<<<dimGrid3 , dimBlock3>>>

( source In fo , rece iverCoord , p0 )

// update p o i n t e r s f o r next time s t e p
f loat ∗ tmp pointer = p2 ;
p2 = p1 ;
p1 = p0 ;
p0 = tmp pointer ;

}
n = nGPU;
. . . // same as v e r s i o n 1

}
}

// v e r s i o n 3
int main ( )
{

. . .
while ( n < numIterat ions ) {

. . . // same as v e r s i o n 1
for (nGPU = n ; nGPU < n + GPUchunk ; nGPU++) {

// k e r n e l s f o r each f a m i l y type
s o l v e i n n e r <<<dimGrid1 , dimBlock1 , 0>>>(innerGridPoints , p0 , p1 )
so lve oCorner<<<dimGrid2 , dimBlock2 , 1>>>(oCornerGridPoints , p0 , p1 )
. . .
// k e r n e l updat ing sources and r e c e i v e r s
updateSrcRce<<<dimGrid3 , dimBlock3>>>

( source In fo , rece iverCoord , p0 )
// update p o i n t e r s f o r next time s t e p
f loat ∗ tmp pointer = p1 ;
p1 = p0 ;
p0 = tmp pointer ;

}
n = nGPU;
. . . // same as v e r s i o n 1

}
}

Common for all versions is the way source and receiver information are retrieved
and copied to and from the GPU and the construction of having an inner and
outer loop, explicitly shown in version 1. Since we are concerned about building
a real-time system, we need to be able to change source and receiver positions
during the simulation and therefore, we can not simply fix the scene parameters
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in the beginning of the simulation and copy the data computed by the GPU
when all time steps have been computed. Copying data to and from the GPU
for every time step might be time consuming depending on the amount of data
being transferred (in case of many moving sources and receivers). Therefore,
computing several time-steps on the GPU without host interacting has been
implemented (customised by the variable nGPU in the source code). The func-
tions getSourceInfo and getReceiverCoord updates the location of the source and
receiver and fetches the source pressures corresponding to the number of GPU
iterations. The function cudaMemcpyAsync is a variant of cudaMemcpy which
perform memory asynchronous memory transactions, returning the control to
the host immediately. For the versions where the DIFs are updated internally,
we can use just two time variables pn+1

i,j,k and pni,j,k for each grid point at time

n+1, since pn−1
i,j,k will not be used by other points for the given time step and can

therefore be overwritten with the new pressure value. Two pressure arrays cor-
responding to pn+1 and pn are used, and when the next time step is computed,
we simply swap the pointers pointing at these arrays. For version 2, we need
three pressure values for each grid point, since updating the DIFs require both
pn+1 and pn−1 and because these are updated externally, we can not overwrite
pn−1 in the main kernel. For version 3, we have seven kernels updating each of
the family grid points. Each has assigned an individual stream index (0-6) indi-
cating that the kernels are independent. Notice that no explicit synchronisation
is necessary for neither of the versions, since the kernels will not run in parallel
unless explicitly stated and updating the pointers will not change the execution
in the kernels, since the pointer address is copied by value by the kernels.

Further, variations of the three versions have been made:

• Moving the source and receiver update into the main kernel.

• Moving filter coefficients and scheme constants (such as λ) in constant
memory.

• Making individual versions for frequency independent update schemes,
such that the impedance is directly saved in a grid point variable member,
and not by referencing an array structure.

• Individual versions of each of the seven schemes (SLF, IWB, etc) have
been made, since not all schemes need to fetch all 26 neighbours. This
results in fewer memory fetches from memory.
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5.3.2 Memory allocation

As already mentioned, CUDA provides functions for memory allocation and
memory copy. When allocating structures consisting of dynamic allocated data
members, the complete structure has to be created on the host with the member
pointers pointing to their corresponding memory addresses in global memory
on the device. For the GPU solver, all grid points are initially copied from
host to device. Copying the memory for each grid point individually turned
out to be painfully slow when considering thousands of grid points, due to
the performance of cudaMalloc and cudaMemcpy. The solution was unusable in
practice, and therefore another approach was taken where all memory on the
GPU are allocated and copied in one big chunk for all grid points. For this
task, a simple – but powerful – class MemoryAssembly has been constructed
with supervision of Frank Wefers. The idea is to let the class keeping track of
all of the host allocated memory with references to the data, together with the
number of bytes allocated for each. When all data have been allocated on the
host, the corresponding memory size is allocated on the device in one big chunk.
All the data allocated on the host are copied to the device using the class and
all pointers referencing the original data are swapped corresponding to the new
memory addressed on the device (See Appendix 9.5 for more details).

5.3.3 Memory Coalescing – Reordering the Grid

One of the most important aspect is how the CUDA kernel is accessing the
data in global memory. The global memory is relatively slow compared to the
other types of memory available, and can cause the performance to drop if many
memory fetches are done. We have used a linear array for keeping the pressure
data of the 3-D grid, enforcing consecutive memory allocation. The pressures
are indexed corresponding to the id of the associated grid point. The FERMI
architecture provides a Level 1 (L1) cache for each multiprocessor and a Level 2
(L2) cache shared by all multiprocessors, where the L1 cache can be configured
to 48 KB, and the L2 cache is 768 KB. Because reads are merged into several
chunks of consecutive memory in order to efficiently use the memory bus, it
is important for the memory to be locally ordered, otherwise the surrounding
data will not used and both latency and memory bandwidth are wasted. A local
memory arrangement is depicted in Figure 5.4, where the boxes are indicating
global memory indexed by the grid point index. Thread t0 is updating grid point
0 and assuming that the 26 neighbours are located at position 1 to 26, we will
have a perfectly optimal memory locality. By reordering the grid points in such
a way that locality is exploited, the cache hit is optimised due to less unnecessary
data fetched from global memory into the cache. In three dimensions it is not
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

...

t0

Figure 5.4: Optimal memory locality. Thread t0 is updating grid point 0. If we
assume that the 26 neighbours are located at position 1 to 26, we have perfect
optimal memory locality, which will ensure many cache hits.

possible to order the points, such that all neighbour points are located perfectly
local for all points, but we can order the point in such a way, that some points
are local to each other. For reordering arbitrary geometries, it is beneficial with
a mapping from coordinate to grid point index/id. For this purpose, a lookup
table is implemented as a linear array storing the ids of the grid points located
in a separate array. The indexes for the linear lookup table array is ordered
in row-major order with indexes corresponding to the coordinates of the cube
enclosing the scene (i.e. grid points) as shown in Figure 5.5 in 2-D. For example,
to find the id of the grid point with coordinate (3,0) in the 2-D grid in Figure
5.5, we get

index = i+X · j = 3 + 9 · 0 = 3

whereas the index for the grid point with coordinate (3,1) is

index = 3 + 9 · 1 = 12

When ghost points are invoked, index 0 will be returned by the lookup ta-
ble, indicating that a ghost point is reached. By accessing the grid points by
coordinate makes it possible to reorder the grid points to enforce spatial locality.

Two reordering schemes have been implemented, namely a slices reordering and
a cube reordering. Reordering the grid points in slices results in locality in
two out of three dimensions. A graphical representation is depicted in Figure
5.6. The translation from normalised coordinates into row-major order in 3-D
is given by

index = i+X · (j + Y · k) (5.3)

where X and Y are the dimensionality in the x and y-direction, and i, j and k
are the coordinate index in the x, y and z-direction.

The second reordering scheme is an attempt to ensure locality in all three di-
mensions by ordering the points in smaller cubes. This would ensure that points
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(0,0)

Figure 5.5: Scene enclosed by an outer rectangle in 2-D.

6 7 8
3 4 5
0 1 2

15 16 17
14
11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

layer 1 layer 2

Figure 5.6: 3-D data arrangement.



70 GPU implementation

24 25 26
21 22 23 30 31 32
18 19 20 27 28
6 7 8 15 16 17
3 4 5 12 13

33 34 35

29

14
0 1 2 9 10 11

Figure 5.7: 2-D data arrangement in rectangles.

inside a cube would enforce locality, but comes with the drawback that neigh-
bour points across a boundary will be located further away from each other. The
cubic reordering scheme for the 2-D case is depicted in Figure 5.7 for a rectangle
divided into four partitions. Inside each partition, the row-major order in Eq.
(5.3) is used to order the grid points.



Chapter 6

System Overview

In this section, the overall system will be explained and a few details about some
of the core functions will be given. In Appendix 9.4, an UML diagram showing
the class interactions can be found.

6.1 Overview

In Figure 6.1, the modules of the overall system are depicted. The system con-
sists of three core modules: GridCreator, Solver and Viewer. These three modules
are individual components and can be executed separately. As the names indi-
cates, GridCreator is responsible for importing and discretising a RAVEN scene
in a format that can be used by Solver. The Solver module is where the FDTD
method has been implemented and solves the wave equation for the discretised
geometry with DIF filters corresponding to the materials applied on the bound-
aries. The module Viewer imports a scene meshed by GridCreator and visualise
the meshed geometry in 3-D. The GridCreator creates a file containing informa-
tion about the meshed scene. Each file entry represents a grid point with its
id, boundary type, material type, coordinate and id of the 26 neighbours. The
viewer has been implemented using VTK1 and makes it possible to inspect the

1The Visualization Toolkit (http://www.vtk.org/)

(http://www.vtk.org/)
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Figure 6.1: Modules of the system.

scene in 3-D. An example of visualising the Eurogress concert hall is shown in
Figure 7.20.

6.2 Modelling grid and grid points

The grid keeps the overall grid information (scene dimensions, grid resolution,
etc.), and incorporates functionality for reordering the grid points, adding and
removing points, among others. The grid points are kept in a linear array, and
can be accessed by either id or coordinate. Each grid point keeps various data,
such as the ids to the 26 neighbours, structures for the values g, x and y used for
modelling the impedance boundary points (from Chapter 4) and the boundary
point type.
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6.3 Solving

The solving part is done using the method Solve. The scheme parameters d1,
d2, d3, d4 and λ are initialised with values corresponding to the scheme type,
and sources and receiver are created with individual positions. Internally, a
map<int, CSoundSource> data structure is used to keep track of the sources using
an unique integer id as key and a class instance of CSoundSource including infor-
mation about source positions and type. Accordingly, a map<int, CReceiverDesc>

data structure is used to keep track of the receivers using a unique integer id as
key and a class instance of CReceiverDesc keeping information about the position
of each receiver.

6.4 Classifying the points

Classifying the grid points is a tedious task, since in principle 226 neighbour
point combinations are possible after the scene meshing process has been done.
As we saw in Chapter 4, the boundary model uses only 94 boundary types in
total, but to be able to correct a meshed scene incorporating point types not
allowed in the framework, all 226 neighbour combinations need to be recognised.
This is not a trivial task and has not been investigated further, instead we
assume that the CAD scenes are constructed such that points supported by the
framework will only be discovered by the grid creation process. Assuming such
a scene, the classification task becomes much more manageable, although still
quite cumbersome.

For classifying a specific point, we must detect which neighbour points are
present and also which points are not present in directions characterising the
given point. It becomes more clear with an example: Let us classify an outmost
right outer edge depicted in Fig. 6.2. By assuming that only the 712 different
points supported by the framework are detected by the meshing algorithm, we
do not need to check all 26 neighbour points, but in this case only the following
neighbours coordinates have to be investigated:

(i+ 1, j, k)

(i, j, k + 1)

(i, j − 1, k)

(i, j + 1, k)

2Pyramid boundaries have not been implemented, yielding 70 boundaries (+1 inner point
type).
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(i-1,j-1,k-1) (i+1,j-1,k-1)

(i-1,j-1,k+1)

(i+1,j+1,k-1)

Figure 6.2: Outmost right outer edge. Room interior nodes are indicated with
black-coloured circles, ghost nodes indicated by white-coloured circles, with edge
ghost points depicted with grey surroundings. The point that is being updated
is indicated with a black-coloured circle with an surrounding circle.

If neighbours are present at coordinate (i + 1, j, k) and (i, j, k + 1), and no
neighbours are present at coordinate (i, j− 1, k) and (i, j+ 1, k), we classify the
point as an outmost right outer z-edge. Following a similar approach for all 71
point types, we can classify all point types.



Chapter 7

Experiments and Results

The aim for this section is to test the FDTD method with respect to physical
correctness and speed. We will first investigate the physical correctness of the
FDTD method described in Chapter 4 by comparing the FDTD results with the
approved FEM results. Next, the performance of FDTD solver implemented
using CUDA on the GPU is measured in different geometries under various
constraints with the goal of determine whether real-time simulations can be
done for frequencies below the Schroeder frequency.

Finally, we will investigate an issue with numerical instability arising when
simulating sound fields in complex geometries.

7.1 Physical Correctness of the Simulated Sound
Field

For validating the correctness of the FDTD simulation, we will compare the
FDTD method with the approved FEM method. The software tool Virtual Lab1

has been used to compute the room transfer function using the FEM method.

1http://www.lmsintl.com/virtuallab

http://www.lmsintl.com/virtuallab
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For each experiment, one source and two distinct receivers have been simulated,
using a band-limited broadband impulse spanning the frequencies of interest.
The transfer function contains information about the geometry of the room, the
material property of the walls where the sound waves have been reflected, the
medium in which the sound waves are travelling in and the position and direction
of the sound source(s). In contrary to FEM methods, the FDTD method is a
time-domain method and therefore the transfer function is not given directly,
but instead the (time-domain) impulse response can be computed containing
the same information as the transfer function. To obtain the impulse response
using the FDTD method, the excitation signal is injected at a given position in
the grid corresponding to the real-world position that is to be simulated. The
injected pressure will propagate through the grid updated by the discretised
wave equation and will be reflected and absorbed by the boundaries modelled by
the digital impedance filters (DIFs). By simply recording the pressure at a given
position, the impulse response is obtained directly. For comparing the results
with the FEM solution, the impulse response is de-convolved with the injected
impulse and Fourier transformed into the frequency domain. The approach is
very intuitive, since the way the simulation is performed resembles the real-world
very closely.

The experiments in this section will be done in a rectangular room of size 7 m×
5 m× 3 m with source (src) and receiver (rce) positions as given in Figure 7.1.
Up to 100 Hz is simulated using the Kaiser-windowed sinc function from Figure
3.2 as impulse to the system injected at the source position, and the signal
is then recorded at the receiver positions. The focus will primarily be on the
SLF, CCP and IWB schemes. The reason for choosing the latter two is their
efficiency as we will see in Section 7.2, and since the SLF scheme is widely
known in the literature, this scheme is include for comparison. Furthermore,
it is claimed that the IWB scheme in general leads to better simulation results
when the boundaries are parallel to the world coordinate system (Kowalczyk
and van Walstijn, 2011). The simulation results for all schemes can be found
in Appendix 9.7 for frequency independent-, Helmholtz resonator- and porous
absorber walls. The experiments were conducted with a total of four receivers,
but only two receivers are included in the results due to similar results w.r.t.
the errors introduced. An overview of the experiments is given below:

Coordinates (cm)
x y z

Scene dim. 7.00 3.00 5.00
Source pos. 5.00 2.50 3.50
Receiver pos. 1 3.77 0.90 1.95
Receiver pos. 2 5.20 2.20 1.10

Table 7.1: Dimension and positions for cubic room simulations.
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x

z

y

(0,0,0)

rce 1

rce 2src 1

Figure 7.1: Source and receiver positions for the experiments in cubic rooms.

• 7 m×5 m×3 m cubic room simulations using all 7 schemes with frequency
dependent- and independent boundaries.

• 7 m × 5 m × 3 m cubic room rotated 45 degrees around the y-axis using
the SLF scheme with frequency independent boundaries.

• Impact on the results when changing the threshold of dispersion errors.

• Comparison of the result when using high and low wall absorption.

• Errors introduced due to meshing.

7.1.1 Experiments

Cubic room with frequency independent boundaries.

In this section we will investigate the physical correctness for the 7 m×5 m×3 m
cubic room with frequency independent boundaries with special focus on the
SLF, IWB and CCP schemes. The specific impedances (ξ) used are given in
Table 7.2. We will compare the simulations performed by our FDTD method

Boundary ξ
Walls 70
Ceiling 70
Floor 12

Table 7.2: Frequency independent impedances used for cubic room simulations.



78 Experiments and Results

and the FEM method with the exact same scene dimensions, source- and receiver
position and material properties, and for not introducing additional errors in
the comparison, we will choose the scene dimensions and source- and receiver
positions such that they fit the spatial resolution for each of the schemes. In
Table 7.1 the coordinates used as basis for all simulations are shown. In Table
7.3 the discretised coordinates are depicted for standard leapfrog scheme. The

Standard Leapfrog Scheme
Discretised coord. (m) Deviation from orig. (m)
x y z x y z

Scene dim. 6.93 3.08 4.88 0.07 0.08 0.12
Source pos. 4.88 2.57 3.59 0.12 0.07 0.09
Receiver pos. 1 3.85 1.03 2.05 0.08 0.13 0.10
Receiver pos. 2 5.13 2.31 1.03 0.07 0.11 0.07

Table 7.3: Discretised scene, source and receiver coordinates discretised to fit
the SLF scheme.

discretisation is straightforward and can be calculated by rounding to the nearest
integer as

Nx =

⌈
7

∆x
− 0.5

⌉
·∆x = 6.93 (7.1)

Ny =

⌈
3

∆x
− 0.5

⌉
·∆x = 3.08 (7.2)

Nz =

⌈
5

∆x
− 0.5

⌉
·∆x = 4.88 (7.3)

where Ni is the scene dimension in the i’th dimension. The same procedure can
be used for the source and receiver positions.

In Figure 7.2, the transfer function for the SLF, CCP and IWB schemes are
depicted together with the error plot showing the differences between the two
simulations. For the SLF scheme, a mean error of 0.3 dB is obtained for both
receivers. The CCP and IWB schemes exhibit a very good fit below ≈ 70
Hz, however, above 80 Hz, errors up to 4 dB are introduced with mean errors
of 0.3-0.6 dB for the CCP and 0.6 dB for the IWB scheme. For all schemes,
the errors become more severe from around 90 Hz, due to fact that dispersion
errors increases with frequency (cf. Figure 3.4). The error could also be caused
by the impulse not spanning all frequencies, but experiments have shown that
choosing an impulse with a cut-off frequency above 100 Hz did yield better
results at higher frequencies. The differentiated Gaussian pulse from Figure 3.2
has also been used for comparison, with no observable differences in the transfer
function.
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Figure 7.2: Transfer function (left) and error plot (right) for the FDTD simula-
tion compared to FEM. Absorption coefficients from Table 7.2 are used in the
Living Room scene.

We will now repeat the above experiments using twice as many sampling points
per wavelength, which corresponds to a maximum of around 0.5 % of dispersion
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errors being introduced. Choosing the resolution in that way, the scene size
and source and receiver positions will still be a multiple of the grid resolution,
making the comparisons easier. In Figure 7.3 d)-f), the results are shown. As
expected, a better fit is achieved compared with the results in a)-c) for 2 %
dispersion error, especially for the higher frequency. The mean errors are now
roughly the same for all schemes with a mean value of 0.3 dB for the SLF and
IWB scheme and 0.2 dB for the CCP. The std. deviations are also roughly
the same being 0.4 dB for the SLF and CCP scheme and 0.3 dB for the IWB
scheme.

We will now investigate the correctness when the spatial resolution is chosen
such that 10 % of dispersion errors are allowed. In Figure 7.4, the result for the
SLF and IWB schemes are depicted. The errors introduced above ≈ 60 Hz are
now quite severe leading to mean value errors around 1 dB and even a mean
value error of 2.1 dB is observed for receiver 2 for the IWB scheme, which may
be unacceptable when physical correctness is the goal.

Finally, in Figure 7.5 the results are compared for high and low wall absorption.
In a) a high absorptions of ξ = 12 is used for all boundaries, and in b) a low
absorption of ξ = 70 is used. From these results it is clear that the amount
of wall absorption has a quite big impact on the simulation results. For low
absorption, the mean error is around 0.9 dB whereas for high absorptions, the
mean error is 0.3. Because more overlapping modes will be present for higher
absorption, less sharp peaks are present for high absorption compared to low
absorption, leading to less errors in the simulation.

Cubic room with frequency dependent boundaries

We will now investigate the results obtained for frequency dependent wall ab-
sorption. As explained in Chapter 4, frequency dependent impedance bound-
aries are modelled using digital impedance filters (DIFs) formulated in Eq. (4.5).
Instead of fitting the impedance data directly in terms of IIR filter coefficients,
we will fit the reflectance data and afterwards convert the filter coefficients to
impedance filter coefficients. Analog to the impedance filter in Eq. 4.5, we can
formulate the reflectance filter by

R(z) =
Z

P
=
b0 +B(z)

a0 +A(z)
(7.4)

Having obtained the coefficients ai and bi from the reflectance data (will be
explained in moment) and ensuring that that the reflectance filter represents a
passive boundary |R0(z)| ≤ 1, the corresponding coefficients for the impedance
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Figure 7.3: Impact of the simulation correctness when using more samples per
wavelength. a)-c) are replicated from Figure 7.2 for comparison. d)-e) are the
transfer functions for the SLF, CCP and IWB, respectively, corresponding to a
maximum of 0.5 % of dispersion errors.
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Figure 7.4: Simulation allowing for a maximum of 10 % of dispersion errors. a)
Transfer functions using SLF, b) Transfer functions using IWB, c) Error plot
for the SLF simulation, d) Error plot for the IWB simulation.

filter can be computed using Eq. (2.9) by

ξw(z) =
1 + z

p

1− z
p

=
P + Z

P − Z
=
b′0 + b′1z + . . .+ b′Nz

a′0 + a′0 + . . .+ a′N

where b′i = ai + bi and a′i = ai − bi. We have used the Matlab function invfreqz

for calculating the discrete-time transfer function corresponding to the complex-
valued reflectance data, resulting in the ai and bi coefficients.

A Helmholtz resonator and a porous absorber in front of an air gap will be used
in the following experiments. The data used contains complex valued reflectance
coefficients in the range from 0 Hz up to the frequency of interest (i.e. 100 Hz).
When computing the reflectance filter from the reflectance data, the z-domain
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Figure 7.5: Comparison for high an and low wall absorption using the IWB
scheme with 2 % dispersion errors. The impedances used are a) ξ = 70 and b)
ξ = 12. The corresponding error plots are given in c) and d).

computation will stretch the filter from 0 up to the Nyquist range. Therefore,
the data must be extrapolated individually for each scheme, such that the region
of interest (ROI) from 20 to 100 Hz is properly scaled. Converting complex-
valued frequency data into stable IIR filters coefficient can be difficult, since
the reflectance data may not yield a stable filter. Therefore the reflectance data
was ensured to be minimum-phase2 before fitting the filter coefficients. The
reflectance and impedance boundary data were approximated with a 5th order
IIR filter, and the result is depicted in Figure 7.6 in the ROI. In Figure 7.7,
the pole-zero plot of a) the Helmholtz resonator and b) the porous absorber
are depicted for one of the schemes. All poles are inside the unit circle, but

2A minimum-phase filter is minimum-phase if the system and it’s inverse are casual and
stable. The Matlab function ita minimum phase from the ITA toolbox has been used.
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a) b)

c) d)

Figure 7.6: Fitting impedance IIR filters of 5th order. a) Reflectance for
the Helmholtz resonator, b) Reflectance for a porous absorber, c) Character-
istic impedance for the Helmholtz resonator, d) Characteristic impedance for a
porous absorber.
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Figure 7.7: Pole-Zero plot for the impedance DIF filter, where the x-axis denoted
the real part and the y-axis denotes the imaginary part. a) the Helmholtz
resonator, and b) the porous absorber.

we see that one pole is very near the boundary. It has been observed that
the system tends to be unstable when poles are near the boundary, caused by
numerical round-off errors. In such cases, the location of the pole needs to be
moved further away from the boundary. The location of the poles can be found
by computing the roots of the polynomial in the denominator of Eq. (7.5). If
the pole p is near the unit circle, we subtract a value such that |p| < 0.99, and
recreate the polynomial form of the poles, resulting in a stable filter.

The simulation results using the Helmholtz resonator wall for the SLF, CCP
and IWB schemes are depicted in Figure 7.8. A good correspondence between
the FEM and FDTD solution is obtained, with a mean error around 0.2 dB
for all schemes. For receiver 2, the mean error remains the same for the SLF,
whereas a mean error of 0.5 dB for the CCP and IWB scheme is obtained. We
see again, that the biggest errors occur in the high frequency range, except for
the SLF.

The last experiments for frequency dependent absorption concerns the simula-
tions with porous absorber walls for the SLF, CCP and IWB schemes depicted
in Figure 7.9. For this experiment, the CCP performs best for receiver 1 with
a mean error of 0.2 dB and a std. dev. of 0.2 dB. The reason that the SLF is
performing slightly worse relative to the two other schemes is probably because
of the sharp peaks introduced in the transfer function only for the SLF simu-
lation. For receiver 2, the SLF is again performing best with a mean error of
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Figure 7.8: Transfer function (left) and error plot (right) for the FDTD simu-
lation compared to FEM. The Helmholtz resonator from Figure 7.6 is used at
the boundaries in the Living Room scene.
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0.1 dB and a std. dev. of 0.2, which must be considered as a very good fit. In
contrary to previous experiments, none of the schemes introduces more errors
in the higher frequencies. If we look at the transfer functions, we see that the
curves for all schemes are very flat for these high frequencies, which explains
the good fit for these frequencies.

Cubic Room rotated by 45 degrees

This experiment will investigate the method’s ability to simulate the sound field
when having a great amount of oblique boundaries in the scene. We will again
use the 7 × 3 × 5 cubic room with the source and receiver positions given in
Table 7.1, but instead of meshing the room oriented with the walls parallel to
the world coordinate system, the room is rotated 45◦ around the y-axis. From
a physical point of view, the simulated sound field should remain the same,
assuming that the source and receivers are located at the same relative position
in the room. This experiment will therefore clarify how the method copes with
oblique boundaries modelled by inner and outer edges and corners. Figure
7.10 shows the meshing difficulties arising for the rotated cube. Three different
discretisations are shown: a) a cubic room parallel to the coordinate system,
b) a cubic room rotated 45◦ around the y-axis, choosing one of the corners as
starting point for the meshing and c) a cubic room rotated 45◦ around the y-axis,
choosing a starting point ∆x/2 away from one of the corners for the meshing.
In b) we notice the same situation as for the point b in Section 4.4, namely
that the corner points have no volume. For minimising the discretisation error,
we will construct the geometry such that the spatial resolution fits the staircase
discretisation as optimal as possible by choosing a starting point with a distance
of ∆x/2 in each directions from one of the corners, resulting in the maximum
number of points inside the geometry. We will only consider the SLF scheme for
this experiments because of the problems explained in Section 7.3. The details
about how to discretise the scene and compute the new positions for source and
receivers can be found in Appendix 9.3.

The results for 2% of dispersion errors can be seen in Figure 7.11a. A slight
offset in the whole frequency range is observed, which does not occur for the
corresponding experiment for the room with edges parallel to the world coordi-
nate system (Figure 7.2). This is reflected by mean errors of 0.4 and 0.6 dB for
the two receivers for the rotated cube, compared to 0.3 dB for the non-rotated
cube. This is caused by the staircase approximation for the boundaries, for
which outer edges are used at the impedance boundaries for the rotated cube,
whereas plane impedance boundaries are used in the non-rotated cube. The
outer edge boundaries compensate, so to say, for all the inner edges with no
impedance boundaries. Even though the results are slightly worse than for the
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Figure 7.9: Transfer function (left) and error plot (right) for the FDTD simu-
lation compared to FEM. The porous absorber from Figure 7.6 is used at the
boundaries in the Living Room scene.
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Figure 7.10: Meshing a cubic room. a) Room constructed parallel to the coor-
dinate system, b) Room rotated 45◦ and meshed by using one of the corners as
start point, and c) Room rotated 45◦ and meshed using a start point with an
offset of ∆x/2 in each of the dimensions relative to one of the corners.

non-rotated cube, the results are still reasonable. In b) twice as many sampling
points per wavelength are used with the goal of refining the staircase approxi-
mations at the boundaries in the hope of getting a more precise discretisation
of the scene. Surprisingly, the curve offset remains the same.

Errors introduced due to meshing

We have already observed that the start point choice when meshing the scene
can lead to different meshes of the scene. When no restrictions are imposed
on the scene size, shape or source and receiver positions, we can construct our
scene such that all dimensions are multiples of the spatial resolution. However,
in arbitrary geometries, it might be problematic to change the geometries such
that they fit the spatial resolution, since it would lead to a model that does not
reflect the real-world environment that we want to simulate. We will therefore
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Figure 7.11: The Living Room rotated 45◦ using the SLF scheme. a) k = 13.4,
b) k = 26.8.

Start point (cm) Scene dimension (cm)
Scheme x y z x y z
SLF 0 0 0 6.93 3.08 4.88
IWB 0 0 0 7.01 1.19 5.10
SLF 0.13 0.13 0.13 6.67 2.82 4.62
IWB 0.32 0.32 0.32 6.37 2.55 4.46

Table 7.4: Impact on the discretisation error in a cube, when choosing a start
point not being a multiple of the spatial resolution.

investigate the impact on the simulation results when choosing a start-point
(∆x/2,∆x/2,∆x/2) for a scene constructed with dimensions being multiples of
∆x. We will perform the experiment for the IWB and SLF schemes, because
of their different resolutions. The results are shown in Figure 7.12 for a) the
SLF scheme and b) the IWB scheme. For both schemes, the precision has been
degraded significantly compared to the results in Figure 7.2. The IWB performs
the worst due to the coarser resolution, therefore missing a grid point resulting
in a room shrinked by 0.6 meters in each dimension. For the SLF scheme,
the room is only shrinked by 0.26 meters in each dimension, depicted in Table
7.4. This experiment clearly shows, that the spatial resolution not only has an
impact on the dispersion error, but in practical situations also highly influences
the errors introduces in the meshing process, resulting in a shift in the resonance
frequencies.
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Figure 7.12: Impact on the discretisation error in a cube, when choosing a start
point not being a multiple of the spatial resolution using frequency independent
impedances given in Table 7.2 a) SLF, and b) IWB.

A Comparison Between the Results Obtained by all Schemes

We will briefly comment on the overall results obtained for all the schemes.
In general, all schemes are performing well for both frequency dependent and
-independent frequency boundaries. The SLF scheme is performing best with
mean errors between 0.2 dB and 0.3 dB, whereas the IDWM scheme is per-
forming worst with mean errors between 0.4 and 0.7 dB. For all schemes, most
errors are introduces in the upper frequency range, except for the IDWM scheme,
where most errors are introduced in the frequency range between 20 and 40 Hz.
The reason for this behaviour remains unknown.

7.1.2 Conclusion

For frequency independent wall absorption with a maximum of 2 % dispersion
errors, mean errors between 0.3 and 0.6 dB and std, deviations between 0.4 and
0.9 were obtained, with the SLF method performing the best. For frequency
dependent wall absorption, mean errors between 0.2 and 0.5 dB and std. devia-
tions between 0.1 and 0.9 were obtained, again with the SLF method performing
the best. In most of the simulations, quite severe errors up to around 4 dB were
introduced in the frequency band between 90 and 100 Hz which may be audi-
ble. Doubling the number of samples per wavelength for frequency independent
boundaries resulted in mean errors between 0.3 and 0.4 dB and std. deviations
between 0.3 and 0.4, with no notable differences between the schemes. Allowing
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up to 10 % dispersion errors degrades the performance significantly, resulting
in mean errors between 0.8 dB and 2.1 dB. An error of up to 0.5 dB may be
acceptable, which is respected by allowing less than 2 % of dispersion errors. To
determine the exact threshold of dispersion errors, a listener tests would need
to be done.

In general, all schemes are performing well, with the SLF scheme performing
best (less than 0.3 dB mean errors) and the IDWM performing worst (less than
0.7 dB mean errors).

It has been observed that the absorption level has an impact on the precision
with mean errors of 0.3 dB for high absorption (ξ = 12), whereas mean errors
around 1 dB for low absorption (ξ = 70) were obtained. This is caused by fewer
overlapping modes for low absorption, leading to sharper frequency peaks.

Choosing scene dimensions not being a multiple of the spatial resolution has a
dramatic impact on the simulation results. When concerned about the lower
frequencies sound field – in this case up to 100 Hz – the spatial resolution is
quite big resulting in discretisation errors up to more than half a meter for the
SLF and around 0.3 meters for the IWB and CPP schemes for 2 % dispersion
errors, yielding unacceptable results.

Finally, the method’s ability to model the sound field at oblique boundaries
was investigated by rotating a cubic room from the previous experiments 45◦

around the y-axis. The results still showed good correspondence between the
FEM and FDTD simulations, though with mean errors between 0.4 dB and 0.6
dB. Even though the results are slightly worse than the experiments for the non-
rotated cube with mean errors of 0.3 dB, it is encouraging that the impedance
filters implemented for pronounced use of staircase approximations still yield
reasonable results. It can also be assumed that most real-world geometries will
have many walls parallel to the world coordinate system, leading to small areas
where staircase approximations are applied.

7.2 GPU Solver

We will compare the different GPU implementations from Section 5 in terms of
performance and point out the most performant implementation. The following
implementations will be compared:

• Grid points computed in a single kernel/multiple kernels.
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• Source and receiver computed in main kernel/separate kernel.

• DIFs computed in main kernel/separate kernel.

• Parameters in constant memory/global memory.

Having decided on which implementation performs the best, we will next con-
sider the following:

• Scheme performance comparison.

• Boundaries and its impact on performance.

• Maximum frequencies for real-time simulation capabilities.

Finally, we will investigate the bottlenecks of the final implementation using the
NVidia Profiler.

7.2.1 Test setup

The aim for the performance test is to investigate whether the simulation of
the sound field in a given geometry under specific constraints (boundary type,
errors allowed) can be computed in real-time. We will use a real-time factor
measured by dividing the duration of the simulated sound-field with the actual
running time spend on solving by

Preal-time =
N ×∆t

tsim
(7.5)

where Preal-time is the real-time factor, N is the number of time steps, ∆t is the
temporal resolution and tsim is the measured running time of the simulation.
We will use N = 2000 for all simulations divided into chunks of 200 GPU time-
steps3.

We will test the implementation in six different geometries given in Table 7.5.
The Cube 1, Cube 2 and Cube 3 scenes are used in the initial experiments
to investigate which of the implementations from Section 5 performs the best,
and also for comparing the individual schemes. The Car Compartment and
the Living Room scene are approximations to real-world scenarios, for which

3Buffers of 6-30 time-steps must be used for a latency below 10 ms, but should not have
any significant impact on the results, since the time spend on copying the data for the source
and receiver to and from the GPU should be negligible.
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we will investigate if the real-time constraint is met for frequencies below the
Schroeder frequency. Finally, we will do a performance test in the Eurogress
concert hall, but since the Schroeder frequency is on the limit of the human
hearing threshold, we will instead find the upper frequency for which real-time
simulations can be done. We will use the following denotations for the three

Space
Length Width Height Volume Schroeder freq.

(m) (m) (m) ( m3) (Hz)
Car Compartment 1.5 1.15 1.5 2.81 450
Eurogress 14,000 21
Living Room 7 5 3 105 120
Cube 1 50 50 50 125,000 -
Cube 2 5 158 158 124,820 -
Cube 3 25 25 25 15,625 -

Table 7.5: The dimensions for four geometries used in this study.

GPU implementations:

A Update and DIF formula for all points computed in seven kernels, one for
each family type.

B Update formula for all points computed in one kernel, DIFs updated in ex-
ternal kernel.

C Update and DIF formula for all points computed in one kernel.

D CPU version.

All experiments have been performed using a NVidia GTX 580 graphics card on
a dual Core 2 2.16 Ghz processor running Windows 7. Microsoft Visual Studio
2010 was used with CUDA 4.1 generating 32-bit code.

7.2.2 Initial experiments

The first experiment will clarify how the three implementations A, B, C and
D performs relatively. Constant memory have been used for the scheme con-
stants d1, d2, d3, d4, and λ, but did not show a notable speedup. Experiments
using asynchronous memory copy from host to device and asynchronous ker-
nel launches for the seven kernel family grid point did not show any significant
speed-up either. All three versions have been customised for handling frequency
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Point family
7.4 % boundary nodes 26.2 % boundary nodes
N Ntype Relative N Ntype Relative

Inner 456,533 456,533 0.926 327,089 327,089 0.7380
Outer corner 8 1 0.0000 8 1 0.0000
Outer edge 924 77 0.0019 1996 ≈ 166 0.0040
Plane 35,574 5,929 0.0722 127,440 ≈ 21, 240 0.2620
Total 493,039 - 1 494,016 - 1

Table 7.6: Distribution of points in Cube 1 (7.4% boundary nodes) and Cube 2
(26.2% boundary nodes).

independent absorbing boundaries, implying that the filter impedance is di-
rectly written to a grid point variable instead of pointing to filter coefficients in
constant memory.

Branch divergence. In Table 7.6 the distribution of the points for Cube 1
and Cube 2 are shown. For Cube 1, 92% of the point are inner points having
no DIF update and since all points in this class uses the same update scheme,
no branch divergence occur. For outer corners and outer edges, branch diver-
gences occur, but since these points only contributes with 0.2% of the total
amount of points, this is negligible. The plane boundaries contributes with
35, 574 point, corresponding to 7.2% of the grid points. Most of the warps will
exhibit no branch divergence, only every b5929/32c = 185’s warp might have a
single branch divergence. There seems to be no way to eliminate these branch
divergences, and having sorted the grid points after type, this is the best we can
do.

Implementation comparison. In Figure 7.13, the performance for the three
implementations A, B and C are compared using Cube 1 and 2 with 7.4 %
and 26.4 % of boundary nodes, respectively. Both slices reordering and cube
reordering were used, but no differences were observed. In the experiments cor-
responding to A, B and C, the slice reordering was used, whereas for experiment
C* the grid points have been randomly reordered in memory. In C*, we notice
a remarkable performance drop by a factor of 3.6 confirming that it is crucial to
enforce coalesced memory. We see no significant difference between the differ-
ent implementations, and surprisingly no performance differences using Cube 1
and Cube 2 were observed using frequency independent boundaries. This might
indicate, that the bottleneck of the system is not the computational load for
each thread, but instead the time spend on memory transactions. A speed-up
factor of 21 is achieved for the GPU implementation compared to the CPU
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Figure 7.13: Performance comparison between the three GPU versions A, B and
C is depicted along with the CPU version. Up to 100 Hz was simulated using
the IWB scheme with k = 5.4 (2 %) in the Cube 1 and Cube 2.

implementation.

Filter order influence on performance. The performance influenced by
using DIFs of order 0 to 10 is depicted in Figure 7.14 using Cube 1 and 2. The
performance for implementation A and C are depicted respectively in a) and b).
First, we notice that using filters of order 0 gives roughly the same results for A
and C, and that the performance is not degraded compared to the customised
implementation in Fig. 7.13 with filter coefficients in constant memory. The
performance drops linearly to around 1 x real-time for 7.4 % boundaries and to
around 0.8 x real-time for 26.2 % boundaries for both implementations using
filters of order 10, corresponding to a performance factor drop of 1.2 and 1.5,
respectively.

Since the previous experiments showed no significant difference between
implementation A, B and C, implementation C will be used for the rest of the
experiments.

Scheme comparison. We will now compare the performance of all the seven
schemes in the Cube 3 geometry. Because the schemes uses different number of
neighbour points (e.g. the IWB uses 26 neighbours, whereas SLF only uses 6),
we have made individual versions for each scheme, such that only the necessary
neighbour points are fetched from global memory. In Figure 7.15, the IWB, CCP
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Figure 7.14: Graph showing the computation time using filters of order 0-10. a)
One kernel for each family point type, b) One main kernel for all point types.
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Figure 7.15: Performance comparisons for customised versions of implementa-
tion C for each of the seven schemes using Cube 3. A slightly smaller scene has
been used for the IDWM scheme due to memory usage.
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Scheme Number of points
IWB 60,841
CCP 74,089
IISO/IISO2 74,089
OCTA 480,636
SLF 922,082
IDWM 907,726 (1,168,651)

Table 7.7: Number of scene point for each of the schemes used for comparison
in Figure 7.15

and IISO schemes are performing more that 7 times faster than the OCTA, SLF
and IDWM. This has two reason. First, the number of points shown in Table
7.7 greatly differs between the two groups due to the spatial resolution. This
is the main reason for the performance differences between the schemes and
apparently the fewer memory fetches and computations for the second group
do not compensate for the greater amount of grid points. However, we see that
the CCP and IISO schemes perform as good or better than the IWB despite
the need of 21% more grid points. The reason is exactly, that fewer memory
fetches are needed, namely 8 and 12 neighbour pressure value fetches for each
point compared to 26 neighbour pressure values for the IWB scheme. The
second reason for the performance difference is because of the Courant condition
devising the sampling frequency:

fs =
k

λ
· fmax (7.6)

The Courant number for the CCP and IWB schemes is λ = 1 and for the IISO
schemes λ =

√
3/4. For the second group we have λ =

√
1/3 for the SLF and

IDWM. The result is higher sampling rates for the schemes with lower Courant
number than for the schemes with higher Courant number, leading to additional
workload to be done in the same period of processing time.

Impact on performance when using more sources and receivers. An-
other important aspect to consider is the performance impact when more sources
and receivers are used. In Figure 7.16a, simulations consisting of 1 transpar-
ent source and 4 receivers has been used, whereas in Figure 7.16b, simulations
consisting of 100 transparent source and 100 receivers are used. We see a per-
formance drop from 1.11 to 1.04 x real-time, which can be considered negligible.
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Figure 7.16: Performance comparison when using 1 transparent source and 4
receivers, and 100 transparent sources and 100 receivers.

Level 1 cache hit Level 2 cache hit
(%) (%)

Cube 1 (coalesced) 97.6 47.8
Cube 1 (non-coalesced) 81.49 77.80

Table 7.8: Cache utilisation for coalesced and non-coalesced pressure value mem-
ory.

NSight Profiler. We have collected a few results about the GPU using NVidia’s
NSight Profiler. In Table 7.8 the cache hit for the Level 1 and Level 2 cache
are depicted. For coalesced memory, a very good cache hit of the fast Level 1
cache of 97.6% is achieved. For the non-coalesced memory in experiment C*,
only 81.49 % of the memory fetches has hit the Level 1 cache, resulting in more
Level 2 cache hits. A cache hit of 97.6 % for the coalesced data may also ex-
plain why reordering in smaller cubes does not affect the performance, since
more cache hits may be difficult to obtain. The L2 cache hits is given as the
percentage of the data fetches not hitting in the L1 cache. These results indi-
cate, that the processing time is not spend on memory fetches. In Figure 7.9,
information about register usage, occupancy, serialisation, and branch efficiency
are depicted.

As expected, we have a high branch efficiency due the ordering of points and
relatively many inner points are present.

The usage of registers (and also shared memory) affects the occupancy, since
only a limited number of registers can be used at a time. The multiprocessor
occupancy is the ratio of active warps to the maximum number of warps sup-
ported on a multiprocessor of the GPU (NVidia, 2011a). In Figure 7.17, the
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Measure
Registers used per thread 44
Registers used per block 1408
Occupancy 16.51
GPU serialisation 0.88
Branch efficiency 1

Table 7.9: Performance measures obtained using the NVidia Nsight profiler.

occupancy can be seen as a function of threads per block with the number of
registers used per block is fixed at 44 registers. In practice, it turned out that
the maximum performance was reached by using 32 threads per blocks, with
no performance gain acheived by using more threads per block. By using 44
registers ad 32 threads per block, the low occupancy is caused by a hardware
limit of a maximum of eight concurrent blocks and not (directly) because of the
number of registers used. For implementation A and B, less registers per thread
are used, but also for these implementations, the performance dropped when
using more than 32 threads per block. The reason that not performance gain
is reached is probably because no improvement in accupancy is reached, due to
the argument just given above.

Figure 7.17: Graph showing the GPU occupancy by changing the number of
threads per block while fixing the number of registers per block to 44 registers.
The graph can be obtained by using the NVidia Profiler.

Though, a problem using many registers is, that data fetches from the same reg-
ister can only be done sequentially. Therefore, if many threads are fetching data
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from the same register – known as bank conflicts – less parallelisation can be
achieved. This might be the reason for the high GPU serialisation. We believe,
that a big speedup should be possible by lowering the serialisation. Since many
neighbour points are shared by many points (actually 27 points for an inner
point), we may lower the serialisation by letting a single thread compute more
than one grid point and making use of shared memory for these common neigh-
bour points. We may not achieve better performance w.r.t. memory latency,
since we already have a very high L1 cache hit, but lowering the serialisation
may increase the performance.

7.2.3 Car compartment and Living Room

Since the goal of this thesis is to investigate whether it is possible to model
the sound field below the Schroeder frequency, we will now turn our focus to
geometries for which the Schroeder frequency is above the limit of the human
hearing. The Schroeder frequency of a car compartment is difficult to determine
because of the combination of very absorbing materials (like seats), and very
reflecting materials (like the windshield), leading to standing waves only for
the reflecting surfaces. The Mercedes S-Class has been used for sound field
simulations at ITA, where the Schroeder frequency has been determined to be
in the range between 300 and 500 Hz. An exact car compartment model for the
before-mentioned S-class was available, but unfortunately the meshing issues
mentioned in Section 4.4 for the point b made it impossible to simulate in this
exact geometry. Instead, a cubic geometry with the same volume has been used,
which should not yield performance results too far from the real model, since
– as shown in previous experiments – the area of the boundary surface does
not have any significant impact on the performance when considering frequency
independent boundaries. The geometry used in the following experiments is
the Car Compartment given in Table 7.5 using a Schroeder frequency of 450
Hz. In Figure 7.18 and 7.19, the GPU and CPU versions of the SLF, CCP and
IWB schemes are compared for both 0.5% and 2% dispersion errors. In Figure
7.18, frequency independent filters are used, whereas 4th order filters are used
in Figure 7.18. The first, and most important thing to notice, is that the GPU
implementation of the CCP and IWB schemes were able to simulate the lower
sound field below the Schroeder frequency in real-time for 4th order DIFs with
less than 0.5% dispersion errors. The SLF method can also perform in real-time,
but only for a maximum of 2% of dispersion errors using 0th order DIFs. An
interesting observation is that the CPU implementation can also be used for real-
time simulations below the Schroeder frequency, if the CCP or IWB schemes are
used for a maximum of 2% dispersion errors. However, if a maximum of 0.5%
of dispersion errors are needed, only the GPU implementations of the CCP and
IWB scheme are capable of performing in real-time.
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Figure 7.18: Graph showing the computation time using frequency independent
filters in the Car Compartment.
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Figure 7.19: Graph showing the computation time using 4th order impedance
filters for the Car Compartment.

In Table 7.10, the upper frequency limit for real-time performance for both GPU
and CPU implementations of the the three schemes is depicted using frequency
independent filters and maximum 2 % of dispersion errors. The highest fre-
quency is obtained using the GPU CCP implementation, yielding 1,300 Hz with
2% of dispersion errors. The IWB follows closely with 1, 250 Hz, both capable
of simulating 3 times as many frequencies as the SLF method.

The results for the Living Room scene is depicted in Table 7.12: the SLF scheme
simulated up to 221 Hz, the IWB simulated up to 549 Hz and the CCP simulated
up to 575 Hz, all well above the Schroeder frequency of 120 Hz. Both the
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Scheme
∆x

N
fs fl rel.

(cm) (Hz) (Hz)

SLF GPU 0.057 14,581 6,030 450 1
SLF CPU 0.117 1,690 2,948 220 1
CCP GPU 0.046 27,225 7,540 1,300 2.88
CCP CPU 0.100 2,700 3,451 595 1.32
IWB GPU 0.051 20,700 6,750 1,250 2.78
IWB CPU 0.103 2,700 3,348 620 1.38

Table 7.10: Maximum frequency range restricting real-time simulation perfor-
mance using the IWB, CCP and SLF schemes in the Car Compartment. Both
the CPU and GPU implementation have been tested allowing a maximum of
2% dispersion errors.

Figure 7.20: The Eurogress concert hall in Aachen visualised with the viewer.

CCP and IWB scheme were able of performing in around 20 x real-time when
simulating up to 120 Hz.

7.2.4 Eurogress

For this experiment, we will find the maximum frequency limit for real-time
performance in the Eurogress concert hall in Aachen. The meshed geometry can
be seen in Figure 7.20, created with our viewer. We will restrict the experiments
to include the GPU version of the IWB, CCP and SLF scheme, and the results
can be seen in Figure 7.11. The highest frequency is again obtained using
the CCP scheme, making it possible to simulate up to 185 Hz using frequency
independent filters. Using a 4th order filter, the highest frequency drops to 175
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Scheme
∆x

N
fs fl rel.

(cm) (Hz) (Hz)

SLF filter order 0 0.357 304,050 964.8 72 1
SLF filter order 4 0.372 260,384 924.6 69 1
CCP filter order 0 0.320 411,718 1073 185 2.57
CCP filter order 4 0.339 349,926 1015 175 2.54
IWB filter order 0 0.368 277,335 934.2 173 2.40
IWB filter order 4 0.374 256,538 918 170 2.46

Table 7.11: Simulation performance of the IWB, CCP and SLF schemes in the
Eurogress concert hall in Aachen.

Hz. Compared to the SLF scheme, a factor of around 2.5 more frequencies can
be simulated using the CCP and IWB schemes.

7.2.5 Conclusion

Three variants of the GPU Solver have been compared showing no significant
performance differences. In a cubic room consisting of around 493,000 grid
points, no performance difference was observed when using 7.4% and 24.2%
boundary nodes for frequency independent DIFs. However, a performance
degradation factor of 1.2 and 1.5 were observed for 7.4% and 24.2% boundaries
using DIFs of order 10.

A comparison of the seven schemes showed a significant performance gain when
using the CCP, IWB and IISO schemes instead of the OCTA, SLF and IDWM
schemes. For the Cube 3 test scene, the four first-mentioned schemes achieved
real-time factors between 6.70 and 7.66, with the CCP scheme as the most
efficient, whereas the latter three schemes achieved real-time factors between
0.14 and 0.97, with the IDWM being the least efficient.

It was shown, that the number of source and receiver has a negligible impact
on the performance.

Real-time performance was possible for the SLF, IWB and CCP GPU imple-
mentations at or well above the Schroeder frequency for the Car compartment,
Living Room and the Eurogress scene summarised in Table 7.12 allowing for
a maximum of 2% of dispersion error with frequency-indepdent boundaries.
Allowing a maximum of 0.5% of dispersion errors in the Car Compartment,
only the CCP and IWB GPU implementations were able to perform in real-
time using DIFs of order 4. If a maximum of 2% of dispersion errors is required,
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Scheme
Car Living Room Eurogress

2.81 m3 105 m3 14,000 m3

SLF 450 Hz 221 Hz 72 Hz
CCP 1,300 Hz 575 Hz 185 Hz
IWB 1,250 Hz 549 Hz 173 Hz

Table 7.12: Maximum simulation frequency restricting real-time simulations for
the SLF, CCP and IWB scheme in the Car compartment, Living Room and
the Eurogress scene allowing for a maximum of 2% of dispersion error with
frequency-indepdent boundaries. The Schröeder frequency for the scenes are:
Car Compartment 450 Hz, Living Room 120 Hz, Eurogress 21 Hz.

the CPU version was also able to perform in real-time. A maximum frequency
limit of fmax = 1, 300 Hz was obtained using the CCP implementation for 2% of
dispersion errors. Real-time performance was also possible for the Living Room
scene of size 7× 5× 3 for both 0.5 and 2% of dispersion errors.

In the Eurogress concert hall with a volume of 14, 000 m3, the CPP implemen-
tation performed best with fmax = 185 Hz for 0th order DIFs and fmax = 175
Hz for 4th order DIFs, achieving a relative performance gain of around 2.5
compared to the SLF scheme.

7.3 Problems with the FDTD method for Com-
plex Geometries

One of the main goals for this project is to investigate the physical correctness
of the sound field modelled by the FDTD method in complex geometries. As we
saw in Chapter 4, 8 families of boundary types with a total of 95 different update
schemes are necessary for handling non-cubic scenes for the general family of
3-D non-staggered compact explicit schemes.

A problem with instability was observed when the update schemes for handling
non-cubic geometry shapes were invoked, and many weeks have gone into this
problem. For visualising the problem, a scene is constructed such that the wave
propagation can be examined in 2-D. The outer cube dimensions are 20 m ×
100 m × 40 m and is depicted in Fig. 7.21a. Two inner edges were created
each including two inner edges-corners. In Fig. 7.21b, the pressure has been
visualised in the x-y dimension along the z-dimension corresponding to the black
line depicted in Fig. 7.21a. By choosing this z-cut, the wave propagation can be
investigated along the edge including the inner edge-corners. From the figure,
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Figure 7.21: a) 20 m × 100 m × 40 m cube including two inner edges and two
inner edge corners, b) Simulation along the z-axis corresponding to the black
line from Fig. a).

we observe that no instabilities occurs along the edges, only at the two endpoints
corresponding to edge-corners instabilities occurs. This gives us the reason to
believe, that the problems in non-cubic environments are caused by problems
in or near the inner edge-corners.

In the first stage, a detailed debugging session was performed with the goal of
examining the logic of the program. The following was investigated:

Grid. It was confirmed that 1) all neighbours are neighbours mutually, and 2)
the relative coordinate of a neighbour point is correct.

Grid point classification. After the grid is created, each point is classified
into one of 71 grid point types. The correctness was tested in a small scene
with four inner edges and no inner corners. By inspecting the geometry,
the number of all individual points where counted by hand and compared
with the number of times the update scheme for each point was invoked.

Update formula. Since the task of implementing 71 update formulas consist-
ing of a big number of indexes is very error prone, the correctness of the
update scheme was checked by choosing a simple scene, where only two
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(out of 24) update formulas for inner edges corners were used and only one
(out of 12) update formula for inner edges was used. By carefully compar-
ing the implemented update scheme to the mathematic formulation, the
implementation of the update scheme is considered correct.

From the logic tests, the author feels confident about the correctness of the
implementation. The mathematical formulation of the update formula for the
inner edge-corner might then be incorrect. In the work by Kowalczyk (Kowal-
czyk (2008a), Kowalczyk and van Walstijn (2011)), only outer corner, outer
edges and outer planes are derived. The remaining update schemes for inner
edges, inner corners and inner edge-corners were derived by the author of the
thesis. The derivation of the problematic inner edge-corner has been derived in
two different ways, 1) eliminating the two ghost points from the update formula
for a plane, and 2) deriving the formula from the update formula directly for an
inner point as done in Appendix 9.2. As expected, both approaches gave the
same result. The procedure followed the same approach as done in (Kowalczyk,
2008a), so unless special cases occur for inner edge-corner, the derivation should
be correct.

A mail correspondence with Kowalczyk (Appendix 9.6) supports the derived
formula for inner edge and inner edge-corners. Another formula was proposed,
which - for a lower-right inner-edge corner - is given as:

pn+1
i,j,k =

[
d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1)

+d2(2pni−1,j+1,k + 2pni−1,j−1,k + 2pni−1,j,k+1 + 2pni−1,j,k−1

+2pni,j−1,k−1 + pni,j+1,k−1 + pni,j−1,k+1)

+d3(4pni−1,j−1,k−1 + 2pni−1,j−1,k+1 + 2pni−1,j+1,k−1) (7.7)

+d4p
n
i,j,k +

λ2

b0
gn +

(
λa0

b0
− 1

)
pn−1
i,j,k

]
/

(
1 +

λa0

b0

)
At the time of writing, implementation of the proposed formula was not possible.
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Chapter 8

Conclusion and Further Work

A system capable of simulating the lower frequency sound field in real-time
has been implemented using seven 3-D non-staggered compact explicit FDTD
schemes incorporating frequency dependent boundaries realised as digital impedance
filters consistent with locally reacting surfaces. 71 update formulas have been
implemented for handling non-cubic geometries, out of which the update for-
mulas for inner edges, inner corners and inner edge-corners have been derived
by the author of the thesis.

Several experiments concerning the physical correctness of the implemented
methods were done in cubic environments, where the transfer functions obtained
at two different receiver positions computed by the FDTD method were com-
pared with the transfer functions computed at equivalent source and receiver
positions using the FEM method. The results for the two methods showed good
correspondence for both frequency dependent and independent boundaries with
the SLF scheme performing best (less than 0.3 dB mean errors) and the IDWM
performing worst (less than 0.7 dB mean errors) for a maximum of 2% of disper-
sion errors. For a maximum of 0.5% of dispersion errors, mean errors between
0.2 dB and 0.3 dB were obtained for the SLF, CCP and IWB schemes. Allowing
up to 10% of dispersion errors resulted in mean errors between 0.8 dB and 2.1
dB, which is considered as audible. It was also shown, that errors introduced
due to discretisation errors of the scene can lead to severe errors in the modelled
sound field.
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The correctness of the modelled sound field when having a big amount of oblique
boundaries were tested by rotating a cubic geometry 45◦ around the y-axis.
The experiment showed good results, although more errors were introduced
compared to the non-rotated cube.

It was shown that real-time simulation below the Schroeder frequency is pos-
sible using the CCP and IWB schemes for both frequency dependent and -
independent boundaries. The results were obtained considering the performance
in several cavities corresponding to a car compartment, a living room scene and
three bigger geometries. For a 50 m × 50 m × 50 m room, up to 100 Hz can
be simulated in real-time for frequency independent boundaries. For the Car
Compartment, up to 1,300 Hz can be modelled, for the Living Room up to 575
Hz can med modelled and for the Eurogress up to 185 Hz can be modelled us-
ing frequency independent boundaries. The CCP scheme performed best in all
cases.

It was shown that the number of sources and receivers did not influence the
performance significantly.

A problem with instabilities for inner edge-corners was observed for all schemes,
except for the SLF scheme, limiting simulations to cubic environments only. The
problem has been investigated intensively, and no mismatch between the theory
(Kowalczyk et al., 2011) and the implemented method is observed. Detailed
debugging has been done, and no implementation errors were found. The SLF
method used for the cube rotated 45◦ gave correct and stable results, supporting
the claim that no problems with the implemented logic are present.

Further Work

The most important work to do for the future, is to investigate the instability
problem in more depth by reconsidering whether the method used for eliminating
the additional ghost points for inner edge-corners results in a stable formulation
from both a theoretical and a practical point of view.

If arbitrary CAD scenes should be used with the system, a much more robust
post-processing step needs to be implemented. Since 226 point combinations
are impossible to classify by brute-force, more sophisticated methods should be
considered by for example exploiting rotations and mirroring of geometries.

The discretisation errors introduced due to meshing CAD scenes were shown
to have a big impact on the modelled sound field. In the DWG literature,
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fractional delay filters are being used for resolving these discretisation errors.
To the authors knowledge, no such filters have been used in the FDTD literature,
and may be applied for solving the discretisation problems.

Another topic is to evaluate the perceptual importance of the dispersion error
by defining the maximum value of the dispersion error which can be considered
perceptually insignificant.

Recently, (Raghuvanshi et al., 2009) have introduced the adaptive rectangular
decomposition (ARD) approach to numerically solve the acoustic wave equa-
tion. The main benefit of ARD is, that much less dispersion errors are intro-
duced. The result showed that a competitive accuracy with the FDTD refer-
ence method using 10 samples per wavelength was obtained, while consuming
12x less memory and computations. Perfectly Matched Layers (PML) (Katsibas
and Antonopoulos (2002), Rickard et al. (2003)) is used for boundary modelling,
and is an efficient method when perfect absorption is needed. Using PML for
modelling boundaries occurring in the real-world may not yield physical cor-
rect results, therefore it would be interesting to implement DIFs into the ARD
method.
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Chapter 9

Appendix

9.1 Derivation of Transparent Sources for the
General Family of Compact Explicit Schemes

We are interested in deriving the general formulation for the transparent source
corresponding to Eq. (3.28) for the family of compact schemes. One can con-
vince itself that for schemes where d4 = 0, the same transparent source for-
mulation (3.28) can be used, since the only change is the values of I, not the
pattern. For d4 6= 0, the source node psrc at the previous time step is now used
when updating the grid, which may change the formulation. By ignoring the
exact polynomial form of the grid impulse at the moment, we can still take a
1-D approach on the problem (even though the schemes does not make sense
in 1-D). We will therefore construct an update scheme in 1-D corresponding to
the general compact explicit scheme

pnsrc = λ1(pn−1
isrc+1 + pn−1

isrc−1) + λ2p
n−1
isrc
− pn−2

isrc
(9.1)

The update scheme has only been constructed with the aim of examining the
behaviour in the vicinity of the source position and is not useful for simulations.
As mentioned before, the choice of d1, d2 and d3 does not influence our trans-
parent source formulation and therefore these are merged into λ1. We follow
the same approach as before, but now using the update scheme (9.1), yielding
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the following grid impulse for an arbitrary grid driving function f

p0
src = 0 (9.2)

p1
src = λ2f

0 (9.3)

p2
src = (2λ2

1 + λ2
2 − 1)f0 + λ2f

1 (9.4)

p2
src = (2λ1 + λ2 − λ2

2)f0 + (2λ2
1 + λ2

2 − 1)f1 + λ2f
1 (9.5)

(9.6)

The grid impulse response using the Kronecker delta function as driving function
gives us

I0 = 0,

I1 = λ2,

I2 = 2λ2
1 + λ2

2 − 1

I3 = 2λ1 + λ2 − λ2
2

leading to a formulation of the pressure values at the source node expressed in
terms of I by

p0 = f0 (9.7)

p1 = f1 + I1p0 (9.8)

p2 = f2 + I1p1 + I2p0 (9.9)

p3 = f3 + I1p2 + I2p1 + I3p0 (9.10)

(9.11)

Interestingly, the transparent source for the general compact explicit schemes
takes the same form as Eq. (3.28), only the grid impulse is changed to not
include any zero values.

9.2 Detailed Derivation of Inner Edge-Corners

In this section we will derive the update formula for the left inner edge-corner
depicted in Figure 9.1. As depicted in Figure 9.1, we have 11 ghost points to
eliminate - 1 corner point, 2 edge points and 8 plane boundary points. We will
start by eliminating the ghost points corresponding to the impedance boundaries
in the axial, side-diagonal and diagonal directions as explained in Section 4.3
given by Eq. (4.38)-(4.40). Formulating the interpolated ghost points in terms
of the points lying on the original rectangular grid yields Eq. (4.44) and (4.45).
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(i+1,j+1,k-1)
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Figure 9.1: Lower y, z frontmost edge-corner with 11 ghost points. Room in-
terior nodes are indicated with black-coloured circles, ghost nodes indicated by
white-coloured circles. The point that is being updated is indicated with a
black-coloured circle with an surrounding circle.

Isolating e.g pni+1,j+1,k in Eq. (4.39) gives us

pni+1,j+1,k = pni−1,j+1,k + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j,k−1 − pni+1,j−1,k

−pni+1,j,k+1 − pni+1,j,k−1 + 4
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) + 4

gnsd
b0

(9.12)

and isolating e.g. pni+1,j+1,k+1 in Eq. (4.40) gives us

pni+1,j+1,k+1 = pni−1,j+1,k+1 + pni−1,j−1,k+1 + pni−1,j+1,k−1 + pni−1,j−1,k−1 − pni+1,j−1,k+1

−pni+1,j+1,k−1 − pni+1,j−1,k−1 + 4
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) + 4

gnd
b0

(9.13)

Inserting the above two equations together and the formulation for the axial
ghost points into the compact scheme in Eq. (3.8) yields

pn+1
i,j,k = d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1

+
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gna
b0

)

+d2(2pni−1,j+1,k + 2pni−1,j−1,k + 2pni−1,j,k+1 + 2pni−1,j,k−1

+pni,j+1,k+1 + pni,j+1,k−1 + pni,j−1,k+1 + pni,j−1,k−1 (9.14)

+4
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) + 4

gnsd
b0

)

+d3(2pni−1,j+1,k+1 + 2pni−1,j−1,k+1 + 2pni−1,j+1,k−1 + 2pni−1,j−1,k−1

+4
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) + 4

gnd
b0

)

+d4p
n
i,j,k − pn−1

i,j,k
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The above formulation corresponds to the formulation for a right plane boundary
in Eq. (4.46). For the formulation of an inner edge-corner, the points pi,j−1,k−1

and pi,j−1,k−1 need to be eliminated, for which we can use the local coherence
condition for a y,z boundary from Eq. (4.52)

∂p2

∂y∂z
= 0 (9.15)

disretised as

pni,j−1,k−1 = pni,j+1,k−1 + pni,j−1,k+1 − pni,j+1,k+1 (9.16)

pni−1,j−1,k−1 = pni−1,j+1,k−1 + pni−1,j−1,k+1 − pni−1,j+1,k+1 (9.17)

Substituting these ghost points into Eq. (9.14) by the above equations yields

pn+1
i,j,k = d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1

+
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gna
b0

)

+2d2(pni−1,j+1,k + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j,k−1

+pni,j+1,k−1 + pni,j−1,k+1 (9.18)

+2
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) + 2

gnsd
b0

)

+4d3(pni−1,j−1,k+1 + pni−1,j+1,k−1

+
a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k) +

gnd
b0

)

+d4p
n
i,j,k − pn−1

i,j,k

We have now eliminated all ghost points, and hence a formulation only consisting
of points inside the geometry is obtained. Now, we only need to reorder the
terms and merging the filters into on one impedance filter gn as explained in
Section 4, Eq. (4.48) ff.

Moving the terms containing the pressure difference term (pn−1
i,j,k − p

n+1
i,j,k) to the
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left side of the equality sign and reordering the terms yields

pn+1
i,j,k −

a0

λb0
(pn−1
i,j,k − p

n+1
i,j,k)(−d1 − 4d2 − 4d3)

= d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1 +
gna
b0

)

+d2

(
2pni−1,j+1,k + 2pni−1,j−1,k + 2pni−1,j,k+1 + 2pni−1,j,k−1

+2pni,j+1,k−1 + 2pni,j−1,k+1 + 4
gnsd
b0

)
+d3(4pni−1,j−1,k+1 + 4pni−1,j+1,k−1 + 4

gnd
b0

)

+d4p
n
i,j,k − pn−1

i,j,k

We have that (−d1 − 4d2 − 4d3) = −λ2, and moving pn+1
i,j,k outside the bracket,

we get after some simple algebraic manipulations the final update scheme for a
right outmost edge-corner in the y,z-direction

pn+1
i,j,k =

[
d1(2pni−1,j,k + pni,j+1,k + pni,j−1,k + pni,j,k+1 + pni,j,k−1

+2d2(pni−1,j+1,k + pni−1,j−1,k + pni−1,j,k+1 + pni−1,j,k−1

+pni,j+1,k−1 + pni,j−1,k+1) (9.19)

+4d3(pni−1,j−1,k+1 + pni−1,j+1,k−1)

+d4p
n
i,j,k +

λ2

b0
gn + (

λa0

b0
− 1)pn−1

i,j,k

]
/

(
1 +

λa0

b0

)
where the impedance filters ga, gsd and gd have been moved into one filter using
the superposition principle.

9.3 Computing Receiver and Source Position for
the 45◦ Rotated Cube

We will need more care to construct the geometry for the rotated cubic scene,
since we are concerned with oblique edges. For the experiment, we will rotate
the cube 45◦ only in the x and z direction, and therefore the y dimension is
given as in 7.3. We will need the oblique boundaries to fit the spatial resolution,
but since these edges are approximated by staircase edges, the length of the x
and z dimensions should fit a multiple of ∆x45 given by

∆x45 =
√

0.2572 + 0.2572 (9.20)
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as depicted in Figure 7.10 c). The length of the y dimension is given as in (7.2)
and the x and z boundaries is computed in a similar way as

Nx = Nz =

⌈
7

∆x45
− 0.5

⌉
·∆x45 = 6.90 (9.21)

Assuming that the uppermost corner is located at (0, 0, 0), we choose the start
position ∆x/2 in the x and z dimensions as

s0 =

 0.1857
0

0.1857

 (9.22)

depicted in 7.10 d). By using this procedure for meshing the smallest possible
discretisation/meshing error for a cube rotated 45◦ is obtained.

Translating the source and receiver positions can be done by rotating a point
around the y-axis expressed by the rotation matrix R

R =

 cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (9.23)

where θ is the rotation angle in radians (45◦ = π/4). Applying 9.23 for all
source and receiver positions from Table (7.1) we have now the positions rotated
45◦ around the y-axis with oregon in the corner point c = (0, 0, 0). Since the
resulting geometry after meshing will be translated such that all coordinates
only takes positive values, we also have to translate the rotated coordinates. By
looking at Figure 9.2, the corner point c has to be translated −→p in the x and z
directions.

The first step is to compute the length B by

C = Ny −∆x45 (9.24)

B = sin
(π

4

)
· C (9.25)

a =

 B
0
0

 (9.26)

Because of the start position used for meshing the scene, the corner point p is
located at

p =

 B + ∆x/2
0

−∆x/2

 =

 2.05
0

−0.1284

 (9.27)
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Figure 9.2: Translating source and receiver points for the cube rotated by 45◦.

Coordinates (cm)
x y z

Scene size 6.90 3.08 5.08
Source pos. 5.00 2.57 3.54
Receiver pos. 1 3.72 1.03 1.90
Receiver pos. 2 5.18 2.31 1.18

Table 9.1: Source and receiver coordinates for the cube rotated 45◦ and discre-
tised to fit the SLF scheme.

Applying the translation vector −→p to each of the coordinates and discretising the
coordinates according to the spatial resolution gives us the positions in Table
9.1. The position in the corresponding non-rotated cube used for the FEM
simulation is obtained by doing the inverse translation and rotation.

9.4 Class Interactions

The four main classes Grid, GridPoint, CSolverBase and CHostSolver are shown in
Figure 9.3. CHostSolver is incorporating methods for solving the wave equation
using the FDTD method, and is a subclass of CSolverBase responsible for ini-
tialising the system. The Grid and GridPoint models a grid and its grid points.
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addPoint( gp : GridPoint)
getPoint( indx : int ) : GridPoint
getCubePoint( indx : int ) : int
storeToFile( path : string ) 
reOrderSlice()
reOrderInteriorCubes()
reOrderOuterCube()

sGridPoints : GridPoint[*]
cGridPoints : GridPoint[*]

Grid

isBoundary() : bool
getBoundaryType() : int
getFamilyType() : int
getPosition() : RG_Vector
setBoundaryType( type : int )

neighbours : int[*]
boundaryType : int
pointFamily : int
materials : RG_Material[*]
g : float[*]
xVal : float[**]
yVal : float[**]

GridPoint

CreateGrid()
CreateSoundSource( type : int ) : int
DeleteSoundSource( id : int )
SetSoundSourcePosition( id : int, coord : RG_Vector )
CreateReceiver( ) : int
DeleteReceiver( id : int )
SetReceiverPosition( id : int, coord : RG_Vector )
HasSceneChanged() : bool
SetSceneUnchanged( hasChanged : bool )

d1 : float
d2 : float
d3 : float
d4 : float
lambda : float
sources : CSoundSourceDesc[*]
receivers : CReceiverDesc[*]
sceneChange : bool

CSolverBase

CPUSolve( numIterations : int, inputSignals   :  float[**], 
                                                  outputSignals : float[**]  )
GPUSolve()
SetTransparentSource( transpSource : float[*] )
ImportFilterCoeffFromFile( path : string, filterCoeff : float[**] ) 
InitGridPointFilters( filterCoeffs : float[**] )

pressure : float[*]
transparentImpulse : float[*]

CHostSolver

  0..*

type : int
indxPos : Int3
realPos : RG_Vector

CSoundSourceDesc

  1

  0..*

indxPos : Int3
realPos : RG_Vector

CReceiverDesc   0..*

Figure 9.3: UML diagram showing the interaction between the main classes of
the system.

9.5 Memory Allocation on the GPU

Copying the memory for each grid point individually turned out to be painfully
slow when considering thousand of grid points, due to the performance of
cudaMalloc and cudaMemcpy. The solution was unusable in practice, and there-
fore another approach was taken where all memory on the GPU is allocated and
copied in one big chunk for all grid points. For this task, a simple – but powerful
– class MemoryAssembly has been constructed with supervision of Frank Wefers.
The idea is to let this class keeping track of all of the host allocated memory and
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all references to this data, together with the number of bytes allocated for each.
A pointer to the allocated memory is returned by the class, and the class mem-
ber function bind is used when the memory is references by other structures. In
this way, the class always knows who are referencing the data by copying the
pointer variable by reference.

void a l l o ca t eGr idPo in t ( GridPoint cu& tmp gp ,
MemoryAssembly& gMemAssembly ,
int dim)

{
// a l l o c a t e g
f loat ∗ g ;
g = ( f loat ∗) g . mal loc ( dim∗ s izeof ( f loat ) ) ;

// i n i t wi th 0 ’ s
for ( int d = 0 ; d < dim ; ++d)

gp [ d ] = 0 ;

tmp gp . g = g ;
gMemAssembly . bind ( (void ∗&) tmp gp . g , g ) ;
. . .

}

When all grid points have been allocated and bind by MemoryAssembly to the
temporary grid point structure tmp gp as before (but this time only host memory
is referenced), the caller function allocates memory on the device for the given
sub-structure in one big chunk as

cudaMalloc ( ( void ∗∗) &d a l l g , totalNumBytesAlloc g ) ;

The goal is now to automatically swap all the pointers in the temporary struc-
ture, such that they point on the corresponding memory on the device. This
is done by calling the class function assemble which will swap all the pointers
in the temporary sub-structure to the newly allocated device memory given as
argument to assemble. The memory allocated on the host does not contain any
data yet, therefore all the allocated memory is copied in correct order to the
destination on the host pointed to by a second argument to assemble. This data
is then copied as one big chunk to the allocated memory on the device:

f loat ∗pDest g = ( f loat ∗) mal loc ( memSize g ) ;
gMemAssembly . assemble ( pDest g , d a l l g ) ;
cudaMemcpy( d a l l g , pDest g , memSize g , cudaMemcpyHostToDevice ) ;

The MemoryAssembly class has been keeping track of all memory, and therefore
all pointers in the temporary structure points at the correct device memory
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locations. Finally, the array tmp gridPoints of temporary GridPoint cu is copied
to the device and free’d afterwards.

9.6 Mail Correspondence with Konrad Kowal-
czyk

Dear Nikolas,

Please find enclosed the pdf with update equations for all 7 boundary types.
If you still have a problem with this one 3/8 boundary type, you can try an
alternative equation which is given at the end of that file. Another reason for
some instabilities might be that you used this 3/8 equation also for boundary
points denoted as 5/8 in the enclosed pdf, which you did not mention in the
thesis.

In general, you can always test which equations give rise to instabilities by set-
ting all other boundary points in your simulation as 0, i.e. not updating them
at all, which yields a perfect -1 reflection, and let your simulation run for a very
long time.

Anyway, I think you really grasped the topic, thought about these simulations
really thoroughly, and finally tried (mostly correctly) deriving many equations
yourself, which I hope your supervisors will take into account when evaluating
your M.Sc. thesis.

Best regards,
Konrad

On Tue, 02/07/2012 12:55 AM, Nikolas Borrel-Jensen ¡mail@nikolasborrel.com¿
wrote:
cc Frank Wefers, RWTH Aachen University
cc Jakob Grue Simonsen, University of Copenhagen

Dear Konrad Kowalczyk
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To your knowledge, I might attach this conversation in the appendix of my the-
sis, if you don’t have any complains about that.

Again, thanks a lot for your willingness to help, it is very helpful! I hope you
have the time for guiding me to a solution for my instability problems for arbi-
trary geometries.

I have derived the update schemes for inner corners, inner edges and inner edge
corners. As far as I can see from my investigation of the problem, the insta-
bility problems arises only at the inner edge-corners. I have been debugging
my implementation very carefully, and I feel quite sure about the correctness of
the logic in my implementation. Therefore, the only problem that I can think
of is, that my derivation of inner edge-corners somehow is wrong. For inner
edge-corners, the easiest way to derive these is to use a plane boundary as a
starting point, and eliminating the two ghost points using the formula for two
meeting boundaries.

I have attached an extract from my thesis, I hope you can find some time to
confirm or (hopefully) disconfirm the correctness of inner edge-corners given in
Eq. (5.62).

By the way, I think that there is a mistake in the formula you send me for inner
edges. In the d 3-terms, one more ghost-point elimination has to be done, as
far as I can see?

Again, thanks for you detailed answers, I hope you can help me resolving this
last problem preventing me from simulating in other geometries than the shoe-
box room...

Kind regards,
Nikolas Borrel-Jensen

Den 05/02/2012 kl. 19.18 skrev Konrad Kowalczyk:

Hi,
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1) As for the DIF implementational issues, this is true that there are a few more
boundary updates possible for interpolated schemes. The most important thing
to remember when deriving them is that the same set of equations as describe
in the paper can be used as a basis and next they can be used to derive the ac-
tual updates. Staircase implementation actually reduces the number of possible
boundary update types. I prepared a short pdf for you that hopefully explains
how this is done.

2) Please find enclosed the figures for Matlab, which should make it easier for
you to analyze dispersion.

All the best for your MSc project.

Regards,
Konrad

9.7 Comparison Between the FDTD and the FEM
method: TF plots
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Figure 9.4: The FDTD method compared with the FEM method. The setup
is depicted in Fig. 7.1 for frequency indep. absorption given in Table 7.2. One
source and two receivers are used.
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Figure 9.5: The FDTD method compared to the FEM method. The setup
is depicted in Fig. 7.1 using the Helmholtz resonator from Figure 7.6 for all
boundaries. One source and two receivers are used. a) SLF, b) OCTA, c) CCP,
d) IDWM, e) IISO, f) IWB.
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Figure 9.6: The FDTD method compared to the FEM method in the Living
Room scene using the porous absorber from Figure 7.6 for all boundaries. One
source and two receivers are used. a) SLF, b) OCTA, c) CCP, d) IDWM, e)
IISO, f) IWB.
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